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ABSTRACT

Prognostics and Health Management (PHM) is identified as
an important lever for enhancing the development of predic-
tive maintenance to ensure the reliability, availability, and
safety of industrial systems. However, the efficiency of data-
driven PHM approaches is dependent on the quality and
quantity of data. Therefore, exploiting multiple data sources
can provide additional, useful information than single-modal
data. For instance, by incorporating multiple data sources,
including condition monitoring data, images from cameras,
and texts from maintenance technicians’ reports, multi-modal
learning can provide a more comprehensive and accurate un-
derstanding of the system’s health. However, multi-modal
deep learning is complex to understand. To address this com-
plexity, it is crucial to incorporate explainable artificial intel-
ligent techniques to provide clear and interpretable insights
into how the model makes decisions. In this light, this paper
proposes the application of the model-agnostic-explanation
approach, i.e., SHAP, to explain the working mechanism of
multimodal learning for the prediction of industrial steam
generator degradation. Particularly, we determine the impor-
tant features of each data modality and investigate how mul-
timodal learning can overcome the issues of low-quality data
from a single modality due to the additional information from
other data modalities.

Keywords: Explainable AI, SHAP, multimodal learning, pre-
dictive maintenance, degradation prediction, steam genera-
tors.

1. INTRODUCTION

Rapid advancements in data-driven PHM have been propelled
by the emergence of machine learning and deep learning tech-
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niques (Nguyen, Medjaher, & Tran, 2023). Nevertheless,
these techniques require large amounts of data, and the qual-
ity of their outcomes depends on both the quality and quantity
of training data. Although the majority of industrial applica-
tions focus on unimodal sensor-based monitoring data, alter-
native sources of information, such as images from cameras
and textual reports from inspections, also exist. Harnessing
these data sources to develop a data-driven prognostic solu-
tion presents considerable challenges due to the greater com-
plexity involved in processing multimodal data. Despite this,
the potential benefits of learning from multimodal data make
it a research direction worth exploring (Jabeen et al., 2023).
The efficacy of multimodal learning can be attributed to the
intricate interplay between diverse data modalities in the
course of training a prognostic function. However, interpret-
ing and explaining these interactions is difficult due to the
diverse nature of the data and the distinct processing methods
required (Joshi, Walambe, & Kotecha, 2021). In industries,
it is vital that stakeholders can understand how a prognostic
model generates its predictions for it to be considered reli-
able and trustworthy as a maintenance decision support tool.
To achieve this, it is essential to integrate explainable artifi-
cial intelligence (XAI) techniques into the development and
deployment of prognostic models. XAI enables the interpre-
tation and communication of the model’s underlying reason-
ing, thereby enhancing stakeholders’ trust in the model and
its predictions.
The use of XAI in prognostics has emerged as a notewor-
thy subject in recent years. For instance, in (Amin, Brown,
Stephen, & McArthur, 2022), the authors used SHapley Addi-
tive exPlanations (SHAP) to explain prognostic models built
from nuclear power station data. Besides, (Nor, Pedapati,
Muhammad, & Leiva, 2022), authors built Bayesian deep
learning models and apply SHAP to determine the contri-
bution of data from sensors. For bearing fault prognosis,
(Sanakkayala et al., 2022) employed a Convolutional Neu-
ral Network (CNN) model, specifically VGG16, in conjunc-
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tion with Local Interpretable Model-Agnostic Explanations
(LIME) (Ribeiro, Singh, & Guestrin, 2016) to detect faults
through spectrogram images that were transformed from vi-
brational signals, and identified the parts of the image used
by the CNN algorithm. McKinley (Mckinley, Somwanshi,
Bhave, & Verma, 2020) used XAI to explain an XGBoost
model that predicts the failure of transit bus Nitrogen Oxides
sensors. In the context of Chiller Fault-Detection Systems,
XAI was applied by using the local explainability of Lime to
a machine learning model (Srinivasan et al., 2021).
Despite the considerable interest in the application of XAI to
the field of prognostics, the extant literature has neglected the
importance of explainable multimodal learning techniques.
To address this research gap, the present study seeks to pro-
vide a comprehensive account of the working mechanism of
multimodal learning for predicting the degradation of indus-
trial steam generators. Specifically, this study aims to answer
three following research questions: (RQ1) Which features are
important for multimodal learning? (RQ2) How does each
feature in each modality contribute to the prediction results?
and (RQ3) How does multimodal learning improve wrong
predictions made by unimodal learning?
To do this, the paper is organized as follows: Section 2 will
introduce the concepts and overview of multimodal learning
and XAI, and the investigation methodology. Our approach
will also be presented in this section. Section 3 is dedicated
to presenting the case study and discussing the obtained re-
sults. Finally, in Section 4, the paper will conclude with a
summary of the key findings and a discussion on the study’s
perspective.

2. EXPLAINABLE MULTIMODAL LEARNING

2.1. Multimodal learning

Multimodal learning is a dynamic approach that integrates
multiple kinds of data to enhance the learning experience and
improve information retention. In this study, a deep learning
model is examined that processes three data modalities: im-
age, text, and numerical data (refer to Figure 1). This model
employs distinct learning branches for each data modality.
Image data is processed using a convolutional neural network
(CNN) (O’Shea & Nash, 2015), while text data is first trans-
formed into an embedding (Jiao & Zhang, 2021) and subse-
quently passed through a CNN. Numerical data, on the other
hand, is processed via a fully connected network. Intermedi-
ate attention layers are incorporated between these branches
to facilitate cross-modal communication at an intermediate
level of abstraction. These attention layers adhere to the
query, key, and value implementation of the attention mecha-
nism as described in (Vaswani et al., 2017). In the proposed
model, text attends to image, image attends to numerical data,
and numerical data attends to text. Given that this study pri-
marily focuses on explaining the multimodal model and elu-
cidating the crossmodal interactions during learning, an in-

depth discussion of the architecture’s implementation details
is beyond the scope of this research.

Figure 1. Structure of the multimodal deep learning model
investigated in this work.

2.2. Explainable artificial intelligent techniques

In the literature, according to the model’s dependency, XAI
can be classified into two groups: model-agnostic and model-
specific methods (Joshi et al., 2021). The first group, which is
independent and irrespective of the explained model, has gen-
eral modularity in design and can be applied to diverse kinds
of models. Meanwhile, model-specific explanations only ap-
ply to a specific model.
In this study, we consider the multimodal model (Figure 1)
which comprises diverse deep learning (DL) modules with
intricate internal interactions. As a result, an explainable
method with model-agnostic attributes is necessary to enable
the explanation of any DL model. Moreover, to address the
three research questions posited in the introduction, the pro-
posed explainable method must be capable of expounding
feature effects within a model while also performing both lo-
cal and global explanations. Given these prerequisites, the
Shapley Additive Explanations (SHAP) approach has been
selected in this paper to explicate the investigated multimodal
learning.
SHAP is a game-theoretic approach for interpreting machine
learning models that assigns a value to each feature based on
its contribution to the final output. By calculating Shapley
values for each feature and combining them, SHAP provides

2



Asia Pacific Conference of the Prognostics and Health Management Society 2023

a detailed explanation of how a model arrives at its decisions.
It works by comparing predictions with and without each fea-
ture and weighting the differences by the proportion of fea-
ture combinations that include that particular feature. For
more details of SHAP, one can consult the paper (Lundberg
& Lee, 2017)

2.3. Investigation methodology

Figure 2 presents an overview of the proposed method to ad-
dress the research questions presented in the introduction. As
SHAP is agnostic to the internal structure of the model but
needs a prediction model to calculate feature effects. In this
paper, a pre-trained multimodal model, three data modalities,
and background factors are used as the input of SHAP for ex-
plainability.
Definition of multimodal background: Applying SHAP to
a multimodal model is challenging due to inconsistent data
dimensions. Therefore, the background for every modality
needs to be converted into the same dimension. Particularly,
the text, numeric, and image backgrounds taken from the
training dataset are converted into a 1D vector with nt, nn,
and ni elements, respectively.
Image background: Instead of using full-size RGB images
for the background, the proposed method segments the image
into ni areas using Simple Linear Iterative Clustering algo-
rithm. This algorithm allows clustering pixels based on their
color similarity and proximity in the image plane (Achanta
et al., 2010). From the ni areas segmented in the image, a
vector with the size of 1 × ni values 0, is used as a back-
ground for SHAP, in which each element is representative of
an area. This enhances SHAP’s computational efficiency and
interpretability since an area has more significant effects on
the prediction results than a pixel.
Text background: To ensure consistency in the dimensions of
the SHAP background, we employed a bootstrapping proce-
dure (Efron, 1992) to resample the training text data into a
single sample with a size of 1 × nt, where nt denotes the
length of each sentence in the training set.
Numeric background: The average value of each feature in
the training dataset is calculated to create a background vec-
tor with a size of 1× nn. This method enhances the meaning
of the dataset by effectively capturing its overall characteris-
tics through the average values.
Three backgrounds of text, numeric, and image data are then
concatenated to create a vector of length of 1×(ni+nt+nn)
that is used as the multimodal background for this study.
Formation of multimodal data that need to be investigated:
Similar to the backgrounds, the image, text, and numeric data
are first converted to the same dimensions prior to investi-
gation. The image is segmented into distinct parts using a
segmentation algorithm, and each part is represented as a fea-
ture of SHAP input in the form of a vector with a total size of
1× ni. It is noteworthy that if an element in this vector is set

to 1, its corresponding region in the image is not masked. The
text and numeric data remain unchanged with dimensions of
nt and nn, respectively. Subsequently, all the input data, in-
cluding the image, text, and numeric data, are concatenated to
create a vector with a size of 1×(ni+nt+nn), which is anal-
ogous in structure to the SHAP’s multimodal background.
Multimodal model that needs to be explaines: This block
serves two primary purposes. Firstly, it ensures that the
SHAP input is appropriately formatted for use in the pre-
diction model. For image data, a mask function denoted as
h(x, origImg) is applied to the SHAP features to generate
a meaningful image maskImg = h(x, origImg). Here, x
represents the Shap input, origImg is the original image that
needs to be explained, and maskImg is the resulting image
after replacing values. If the area-representative-element in
the input image vector is 0, then all the values in that area are
replaced with 255; otherwise, no replacement occurs. In con-
trast, text and numeric data do not require a masking func-
tion. Secondly, after processing the input data, the multi-
modal block is used to generate a prediction value, which is
then explored by SHAP to calculate the SHAP values.
Resolving research questions: The outputs of SHAP serve
to address the three research questions posed in the introduc-
tion. To answer for RQ1, the mean absolute SHAP (MAS)
value is calculated for each feature across the entire train-
ing dataset. Notably, in the case of text data, where fea-
tures change in each sentence, the MAS is calculated for each
”word” appearing in the training data. From that, a bar plot
is used to visualize the importance of each feature from three
data modalities. For RQ2, the training dataset is divided into
different groups according to the system’s degradation level.
The MAS values of each feature for each group are then
calculated separately for both the multimodal and unimodal
models. Afterward, a comparison between the unimodal and
multimodal models is conducted within each group to deter-
mine how each feature contributes to the prediction results in
each type of model. With the final question RQ3, the initial
step involves the identification of specific instances exhibit-
ing significant Mean Absolute Error (MAE) within the con-
text of unimodal learning. Then, the SHAP’s waterfall plot
is used for investigating the origins of the aforementioned
error, while also determining which features serve as poten-
tial drivers of improved predictive outcomes in the context of
multimodal learning.

3. CASE STUDY

3.1. Description of case study

The case study utilized in this paper pertains to the degra-
dation level prediction of steam generators (SG), which is
achieved through the implementation of a multimodal model.
The model categorizes the degradation levels into three
groups: good (0,40], medium (40,80], and bad (80,+∞). It
is designed to process input data in the form of images, tex-
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Figure 2. Overview of the investigation methodology.

tual information, and numerical data. Specifically, the images
are constructed based on the Wide Range Level (WRL) sig-
nal (Girard, 2014), which is a measure of the pressure dif-
ference between the top and bottom of the SG downcomer.
Text data is written by technicians after each inspection, in-
cluding qualitative descriptions of the machine’s deterioration
before maintenance, the maintenance performed, and the ma-
chine’s condition after maintenance. Numerical data consists
of maintenance information including the “number of chemi-
cal cleaning”, “number of mechanical cleaning”, “time since
the last repair”, “next inspection time”, and working “time”
of SG. The details about the case study can be found in (Yang,
Baraldi, & Zio, 2021), in which, an example of each type of
data is visualized in Figure 3.

Figure 3. An example of the types of data used in this paper.
(“atu”: arbitrary time units)

3.2. Results and discussions

This section aims to represent the achieved results by apply-
ing SHAP for both multimodal and unimodal models. The
representation will include 3 parts corresponding to research
questions (RQ1, RQ2, and RQ3) that were mentioned in the
introduction of the research. To address RQ1 and RQ2, we
analyzed the training dataset to determine the contribution
of features to model development. RQ3 was addressed us-

ing the test dataset to investigate erroneous predictions in the
unimodal model and to identify how the multimodal model
improves prediction accuracy.
Answer the RQ1: Figure 4 presents the results obtained after
evaluating MAS values for each feature on the entire dataset.
Specifically, Figure 4a depicts the average contribution of the
20 most important features from all three modalities to the
predictions. Furthermore, Figure 4b presents specific visual-
izations for the important order of features in each modality.
The image data visualization represents 32 distinct features
corresponding to 32 areas of the image, as determined by the
segmentation algorithm. Meanwhile, the text data visualiza-
tion displays the top 10 features with the highest impact on
the results. And the numeric modality is shown with all its
features mentioned in the previous section.
Considering Figure 4a, one can see that the numeric modal-
ity demonstrates the highest importance, with significantly
higher SHAP values compared to other modalities. After the
numeric modality, the image data also contributes to the pre-
dictions with values ranging from 2 to 3. However, the text
data appears to have a relatively minor impact on the predic-
tions, with all values below 1.5.
Regarding the important order of features in each modality,
see Figure 4b, one can see that in the case of image data,
SHAP values concentrate on the top regions of the image with
darker green colors, but are less pronounced towards the bot-
tom. This phenomenon may be attributed to a dataset imbal-
ance, where the medium and bad groups have nearly twice
as many instances as the good group, as indicated in Table 1.
Furthermore, in the images, as the degradation curve is not
present in these areas on the right side, multimodal learn-
ing does not allocate its attention toward them. For numeric
data, only the “time” feature, indicating the current working
time, holds limited meaning in degradation. The remaining 4
features are important as they reflect the degradation of the
steam generator. The text modality, when compared with
other types of data, has a small impact on the results. De-
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(a) Order of the 20 most important features from 3 modalities (b) Importance order of features in each modality (Num, Image, Text)

Figure 4. Importance order of features for multimodal learning

spite the “least” feature being deemed the most important but
lacks meaningful information to reflect degradation levels ac-
curately.

Table 1. Number of samples from each group

Group Number of samples
Bad 398
Medium 542
Good 284

Answer the RQ2: This study conducts a comparative analysis
of the feature importance in the construction of unimodal and
multimodal models for each SG’s degradation group. No-
tably, each type of data is used for the corresponding uni-
modal learning while these 3 data modalities are the 3 inputs
of the same multimodal model. The results of this analysis
are presented in Figure 5.
One can see that for a given degradation group and data
modality, the SHAP values of features in the unimodal model
are higher than those in the multimodal model. This is due
to the distribution of contribution across features from other
modalities in the multimodal model, resulting in a compara-
tively lower amplitude than in the unimodal model.
In imaging modality, both uni- and multimodal learning fo-
cus upwards, but unimodal learning emphasizes the left side
of the image while multimodal learning distributes contribu-
tion evenly across the object’s position. The histogram on
the right indicates degradation density, with the multimodal
model achieving higher accuracy by focusing on areas with
high degradation density, while the unimodal model does not
emphasize these areas as much.
For text modality, the top 10 important features with the high-
est SHAP values are displayed. In contrast to the unimodal
model, the text data has a limited impact on the prediction ac-
curacy in the multimodal model. The unimodal model lever-

ages all available information to produce more accurate re-
sults, making the explainable information from the unimodal
model more meaningful. In the good group, the unimodal
model focuses on features such as “fine”, “OK”, and “new”,
while other features appear to work well except for “fail-
ure” and “heavy”. These two words do not indicate a prob-
lem in the good group but are often accompanied by “not”
in a sentence, indicating that the machine is still fine. The
model does not focus on this feature “not”, leading to mis-
understandings in the explanation. In the medium group, the
unimodal model focuses on words that denote some sign of
degradation, such as “degrades”, “failure”, and “unexpected”.
In the bad group, words with more serious meanings, such
as “needed” and “carefully” are prominent. However, some
words that lack meaning, such as “and”, “thoroughly”, and
“some,” contribute to a high mean absolute error in the model.
Besides, the text modality has limited meaning in the multi-
modal model at each group level.
For numeric data, the “number of chemicals” has the great-
est impact on prediction in the multimodal learning for all
3 groups. Meanwhile, this impact varies across the differ-
ent groups in unimodal learning. Additionally, in multimodal
learning, the “time” feature has a negligible impact on model
prediction, as indicated by its SHAP values consistently be-
ing under 1 across all three groups. This similarity also holds
true for unimodal groups, where the “time” feature has the
lowest contribution out of the five features.
Answer the RQ3: To address this research question, we an-
alyzed specific cases with high Mean Absolute Error (MAE)
in the prediction of unimodal learning and visualized them
in Figure 6. We compared the results of the unimodal and
multimodal models in these cases and provided detailed ex-
planations.
Figure 6a compares a unimodal (based on the image data)
and a multimodal model for the same sample. The unimodal
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Figure 5. Contribution of features in each degradation group

model has a high MAE of 25.52 because there exists wrong
information from image data (i.e. the degradation curve in
the image is at the position between the medium and good
groups while the true degradation level belongs to the bad
group). Besides, multimodal learning leverages useful infor-
mation from additional numeric features, resulting in a sig-
nificantly lower MAE of 1.65 in the prediction result.
Figure 6b displays the explanations and results for a sample
of unimodal learning based on numerical data and the corre-

sponding result when using multimodal learning. The uni-
modal model has a high MAE of 39.9 due to a lack of infor-
mation from the image data, which is included in the multi-
modal model. The ”number of mechanical cleanings”, ”num-
ber of chemical cleanings”, and ”time from last repair” are
important features in both models, but the multimodal model
also considers the ”time” and ”next inspection time” features,
which play a significant role in determining the machine’s
state. The order of these features in each explanation con-
tributes to the higher accuracy of the multimodal model.

4. CONCLUSION

This paper explored explainable multimodal learning for
steam generator degradation prediction. SHAP was used to
determine important features of each modality and investi-
gate how multimodal learning can overcome low-quality data
from a single modality. Results showed that the numerical
modality was the most important, followed by image and text
data. The multimodal model achieved higher accuracy in
areas with high degradation density for the image modality,
while the text modality had limited impact in the multimodal
model. Among numeric features, the “number of chemicals”
had the greatest impact on prediction in the multimodal model
for all degradation groups. From these findings, this study
has identified potential avenues for improving the accuracy of
the predictions of the SG’s degradation by using multimodal
learning.
This paper serves as a foundation for future research in apply-
ing multimodal learning to industrial applications. Further
investigation into the inner mechanisms of the multimodal
model, including the interaction between individual nodes
and modalities, could yield valuable insights for enhancing
model accuracy.
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