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ABSTRACT 

The failure of rolling element bearings in complex 

mechanical systems is a significant cause of mechanical 

failures, leading to decreased productivity and safety risks. 

Deep learning has shown promising results in bearing fault 

diagnosis, but the predictive performance depends on high-

quality data. Domain adaptation has been studied to solve this 

problem, but it still has limitations when applied to real-world 

industrial applications. In this study, we propose a deep 

learning-based domain generalization framework for bearing 

fault diagnosis using the bearing simulation model and 

adversarial data augmentation method. The proposed 

framework was validated on a real bearing fault dataset and 

showed promising results in improving diagnostic 

performance in cases where fault data cannot be obtained or 

when dealing with unlearned target domains. This approach 

has the potential to improve industrial maintenance systems 

by obtaining improved generalization performance in the 

absence of fault datasets. 

1. INTRODUCTION 

Rolling element bearings contribute significantly to 

overall productivity in rotating machinery, but they are 

vulnerable to external influences such as acidic liquid 

corrosion, lubricant deficiency, and plastic deformation due 

to harsh working environments and long operating times. The 

failure of bearings in complex mechanical systems accounts 

for approximately 30% of entire mechanical failures, which 

cause serious time consumption, a decrease in productivity, 

and the risk of fatal accidents (Zhang, 2020). As a result, 

bearing fault diagnosis is being highlighted as an essential 

research field in modern industrial maintenance systems. 

Deep learning, which has shown promising results in a 

variety of fields, has been applied to condition monitoring, 

demonstrating predictive performance and generalization 

ability that outperforms existing signal processing-based 

studies (Shao, 2018; Chen, 2017; Zheng, 2019). However, 

implementing an accurate predictive model based on deep 

learning presents a challenge because it requires high-

resolution and high-quality data.  

In order to solve these problems, deep learning-based 

bearing fault diagnosis has been studied in the field of domain 

adaptation over the past few years (Chen, 2020; Li, 2019). 

Domain adaptation is to transfer knowledge learned from the 

labeled training data (i.e., source domain) to the unlabeled 

data (i.e., target domain) in order to minimize domain 

discrepancy and improves the diagnostic performance of the 

target domain. It showed excellent performance by solving 

difficulties arising from data acquisition, including building 

big data in various domains or acquiring fault data. However, 

domain adaptation also has some limitations in application to 

actual machine diagnosis. First, characteristic fault 

frequencies can change according to the alignment and 

looseness of the shaft and size of the bearing elements so that 

the vibration signal of the bearing shows a clearly different 

data distribution for each machine. Therefore, bearing fault 

diagnosis is impossible when fault data cannot be acquired, 

such as in new equipment. Second, even if fault data for target 

domains are acquired, domain adaptation cannot be 

diagnosed with good generalization performance for new 

unlearned target domains. 

In this study, we introduce the domain generalization 

framework that learns simulation data for bearing fault 

diagnosis. The proposed framework aims to diagnose when 

there is no fault dataset for the target domain, which has two 

characteristics: generation of a bearing simulation dataset for 

learning of deep learning model and an adversarial data 
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augmentation method for bearing fault diagnosis of 

unlearned target domains. The effectiveness of this method 

was validated in experiments on a rolling-element bearings 

defect dataset. 

2. PROPOSED METHOD 

2.1. Bearing Simulation Model 

Localized bearing fault vibration response can be viewed 

as a complex mix of contributions modeled by a secondary 

cyclo-stationary process. When this non-stationary condition 

is considered, the vibration signal can be described as a 

periodic impulse excitation signal (Antoni, 2007; Liu, 2021): 

where ℎ(𝑡) denotes the impulse response, 𝑖 is the sequential 

number of impulse excitation, 𝑇  and 𝑡  is the time interval 

between two impulse excitation and is discrete time variable, 

respectively. 𝜏   and 𝐴  are the uncertainties on the inter-

arrival time and the magnitude. Finally, 𝑞(𝑡)  and 𝑛(𝑡) 
represents the periodic modulation generated by the load 

distribution and the environment noise, respectively. 

2.2. Adversarial Data Augmentation Algorithm 

In many domain adaptation studies, the bearing fault 

diameter was also designated as the label class. However, 

since the difference in distribution between simulation and 

actual data is large, and it is difficult to generate simulation 

signals according to fault diameters, this study generates and 

learns simulation signals for four categories (e.g., healthy, 

inner race fault, outer race fault, and rolling element fault) 

and infers them for the target domain. 

The proposed framework aims at data augmentation in a 

direction that can expand the data distribution by generating 

outside the distribution learned by the deep learning model, 

which is different from the existing data augmentation that 

generates data within the distribution, as shown in Fig. 1. 

Therefore, augmented domains improve the capacity and 

generalization performance of deep learning-based 

diagnostic models by mimicking unseen target domains as 

much as possible. 

To achieve this goal, we propose the proposed 

framework that follows the architecture presented in (Qiao, 

2020), as shown in Fig. 2. The proposed framework consists 

of two architectures, and the overall loss function is 

formulated as follows: 

ℒ = ℒ𝑡𝑎𝑠𝑘(𝜔; 𝑥) − 𝛼ℒ𝑐𝑜𝑛𝑠𝑡(𝜔; 𝑧) + 𝛽ℒ𝑟𝑒𝑙𝑎𝑥(𝜓; 𝑥) (2) 

where ℒ𝑡𝑎𝑠𝑘  is the classification loss, ℒ𝑐𝑜𝑛𝑠𝑡  is semantic 

consistency constraint to prevent changes in the labels of 

adversarial examples generated to augment the data outside the 

data distribution, and ℒ𝑟𝑒𝑙𝑎𝑥  guarantees large domain 

transportation, generating data that is as fictitious yet 

challenging as possible. 𝜔 and 𝜓 are parameters of task model 

(i.e., general convolutional neural network, CNNs) and 

Wasserstein autoencoder (WAE), respectively.  

Given the objective function ℒ, we employ an iterative way 

to generate the adversarial samples 𝑥+ in the augmented domain 

S+: 

 𝑥𝑡+1
+ ← x𝑡

+ + 𝛾∇𝑥𝑡
+ℒ(𝜔, 𝜓; 𝑥𝑡

+, 𝑧𝑡
+) (3) 

where 𝛾  is the learning rate of gradient ascent. A small 

number of iterations are required to produce sufficient 

perturbations and create desirable adversarial samples. ℒ𝑐𝑜𝑛𝑠𝑡 
and ℒ𝑟𝑒𝑙𝑎𝑥 proposed in the overall loss function are as follows: 

 ℒ𝑐𝑜𝑛𝑠𝑡 =
1

2
‖𝑧 − 𝑧+‖2

2 +∞ ∙ 1{𝑦 ≠ 𝑦+} (4) 

 ℒ𝑟𝑒𝑙𝑎𝑥 =
1

2
‖𝑥 − 𝑥+‖2

2 (5) 

where 1{∙} is the 0-1 indicator function and ℒ𝑐𝑜𝑛𝑠𝑡 will be ∞ 

if the class label of 𝑥+ is different from 𝑥.  

 𝑥(𝑡) = ∑ℎ(𝑡 − 𝑖𝑇 − 𝜏𝑖)𝑞(𝑖𝑇)𝐴𝑖 + 𝑛(𝑡)

𝑖=𝑁

𝑖=0

 (1) 

Figure 1. Illustration of the proposed domain extension. (a) 

general data augmentation. (b) the proposed adversarial data 

augmentation. Figure 2. The architecture of the proposed framework. 
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3. RESULTS AND DISCUSSIONS 

3.1. Experiment Setting 

The effectiveness of the proposed framework was 

validated using an experimental bearing dataset from the 

Case Western Reserve University (CWRU) in the United 

States. The bearings in the dataset were artificially damaged 

using various methods in different locations. Acceleration 

measurements have been captured on the drive-end bearings 

with a sampling frequency of 12kHz. The signal length is 

equally split into 2048 lengths without overlapping. 

3.2. Experiment Results 

In this section, we demonstrate that simulated signals 

that mimic real-world machine signals, as well as the 

proposed deep learning-based augmentation signals, are 

generated while accurately reflecting the physical properties 

of actual bearings. Fig. 3 shows the inner race fault class’s 

simulated, augmented, and real signals. Simulated signals 

show that the characteristic frequencies match real signals 

with the same bearing specifications, which is explained that 

simulated signals reflect the mechanical properties of the 

actual bearing well. However, simulated signals are difficult 

to reflect the individual characteristics of real signals, such as 

mechanical looseness, imbalance, and environmental noise. 

Fig. 3 (b) compares real signals with augmented signals 

generated by adversarial training. Augmented signals reflect 

characteristic frequencies of the inner race fault while 

showing that more complex signals can be generated. These 

results imply that realistic but challenging signals can be 

generated by gradually extending the data domain from 

simulated signals that mimic characteristic frequencies. 

We compare the base model in which simulated signals 

are learned to the proposed method in which augmented 

signals are generated and learned to demonstrate the validity 

of the proposed framework. Table 1 lists the information on 

the operating conditions of CWRU dataset classified into four 

categories. Since characteristic frequencies and amplitudes of 

actual bearings change depending on the operating conditions, 

diagnostic performance is compared for each condition and 

presented in Table 2. The proposed method not only 

improves average accuracy by 20.06 % compared to the basic 

method, but also it also shows exceptional diagnostic 

performance under all conditions. In addition, the trend of 

diagnostic performance of the proposed method and the base 

method has a similar tendency according to each condition. 

This result implies that augmented signals generate vibration 

signals with various information that simulated signals did 

not have while accurately reflecting the information of the 

impulse excitation signals that simulated signals did have. 

4. CONCLUSION 

In this study, we propose a domain generalization 

framework for bearing fault diagnosis when no fault dataset 

exists for the actual bearing. The proposed framework aims 

to generate fictitious but challenging bearing fault signals by 

combining simulated signals of bearing failure used for 

learning and a deep learning method to perform adversarial 

Figure 3. Visualization of simulated, augmented, and real signals. (a) Comparison of real and simulated time signals. (b) 

Comparison of real and augmented time signals. (c) Comparison of simulated and augmented frequency components. 

Table 1. Operating conditions of CWRU dataset. 

 

 Condition 1 Condition 2 Condition 3 Condition 4 

Speed 

(rpm) 
1797 1772 1750 1730 

Load 
(HP) 

0 1 2 3 

 

Table 2. CWRU dataset classification results. 

 

Method Source data Target data Accuracy (%) 

Base 

method 
Simulation 

Condition 1 46.97 

Condition 2 60.77 

Condition 3 59.81 

Condition 4 46.47 

Proposed 

method 
Simulation 

Condition 1 73.41 

Condition 2 78.29 

Condition 3 71.91 

Condition 4 70.66 
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data augmentation. The proposed method outperformed the 

base method learned with simulated signals, and it was 

demonstrated that augmented signals retain information 

about the physical properties of simulated signals as well. 

However, for the condition with low accuracy in the base 

method, the proposed method also had low accuracy 

compared to other conditions, implying that additional 

research on domain extension should be conducted. In 

addition, future work will be performed, such as comparison 

with domain adaptation methods and validation of datasets 

other than CWRU. We believe that the proposed method will 

help overcome the problem in the absence of fault data. 
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