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ABSTRACT

The optimization of technical operations in the aviation in-
dustry is critical to reduce both, costs and operational inci-
dences. Aircraft and maintenance data as well as advanced
algorithms are the key ingredients for such an optimization.
The rise of Al algorithms combined with an increase in the
available data to feed those algorithms provides a challenge
to the traditional approaches. A question of interest is which
model type should be used for a specific problem. In order to
illustrate the difference in modelling approaches, we will in-
troduce a hydraulic leakage case as a basis for our discussion.
The application of traditional modelling approaches is com-
pared to that of an Al based time series prediction. We will
show that traditional use cases are better suited for the intro-
duced problem but also discuss situations where Al would be
advantageous. We will then turn our attention to the question
when and how such models can be used in a strictly regu-
lated industry like aviation and what the potential future gov-
ernance could look like.

1. HYDRAULIC LEAKAGE USE CASE

An Airbus A320 has 3 hydraulic systems (blue, green, yel-
low) which are all responsible for different parts of the air-
craft. Figure 1 shows a representative time series of a green
system. The hydraulic oil quantity in liters is displayed on
the y-axis. The x-axis represents the corresponding flight in-
dex which is an integer representing consecutive flights. The
quantity was measured at a specific time during the flight.
The figure shows characteristic changes in the time series,
we’ll call each of the identified phases cycles. We notice
an overall downward trend of the time series which demon-
strates that the hydraulic oil quantity is typically decreasing
after each flight. The explanation for this is that the hydraulic
system is not 100% isolated and some oil naturally leaves the
system during standard flight operations. Cycle 1 is a stan-
dard cycle followed by an abrupt jump after which cycle 2
starts. The abrupt jump was caused by a maintenance event
where hydraulic oil was refilled. Such maintenance actions
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Figure 1. Airbus A320 hydraulic quantity time series for the
green system. The flight index is an integer representing con-
secutive flights. Each point is a snapshot measurement of the
quantity within a flight. Vertical dashed lines represent dif-
ferent phases of the system, called cycles.

are done on a regular basis to prevent hydraulic oil over- and
underfills. After index 120 we observe a much larger negative
slope in the time series, which is the beginning of the leakage
cycle 3. Leakages can happen due to cracks in the hydraulic
cylinders or deterioration of system components. We are in-
terested in a model which helps to identify and alert when
leakages occur such that maintenance actions can be taken as
soon as they are identified.

2. TRADITIONAL MODELLING

A clear separation between a traditional model compared to
an Al model is difficult. Linear regression has been used in
the 19th century (Wikipedia, 2023, Linear Regression), but
is also part of the standard literature about machine learning,
see (Hastie, Tibshirani, & Friedman, 2009). For the scope
of this paper, traditional models are loosely defined as mod-
els developed before the recent 21st century advances in Al
model development!.

'Note that scientific work on neural networks has been successfully per-
formed in the 20th century, see (Macukow, 2016) for a more detailed cov-
erage of the history of neural nets. However, many of the current state-of-
the-art models were developed in the 21st century.
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Figure 2. Linear fit to all the data.

For simplicity, we will focus on modelling the time series
covering cycle 2 and 3 to avoid dealing with the jump. The
resulting model can then be applied to individual cycles. The
following traditional models could be chosen to model the
system:

1. A linear regression model.

2. A discrete linear state space model.
We will develop a model architecture for both of them.

2.1. Linear Regression

In a linear setup the data is modelled as
yi = Bo + Biti + €& 9]

where y; is the hydraulic quantity at flight cycle ¢;. Mod-
elling the quantity via a linear regression has two challenges.
Firstly, we observe some large outliers which typically occur
when the hydraulic system is in active use at the time of the
measurement. A standard linear regression is sensitive with
respect to outliers. Robust linear regression models should be
used instead, see (Yu & Yao, 2017). However, a more difficult
challenge to the linear model is the sudden change of slope
initiating the 3rd cycle. A linear fit to all the data will clearly
not perform well as the slope changes during the time series,
see Figure 2. The time series is piece-wise linear. Change
point detection algorithms could be used instead, see (Killick
& Eckley, 2014). The output of such an analysis would be pa-
rameters 3 which are slopes identified for cycle k. Most in-
terestingly, ¥ would represent the actual leakage rate which
can be monitored. However, note that a typical monitoring
application requires an online prediction where leakage rates
are estimated and predicted on each new incoming data point.
Most change point algorithms work in an offline setup, which
needs to be addressed.
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Figure 3. Quantity estimate for the state space model as de-
fined in Equation 3.

2.2. Discrete Linear State Space Model

State space models are popular in control engineering, see
(Bar-Shalom, Li, & Kirubarajan, 2001) for a comprehensive
introduction. In such a setup, we distinguish between the ob-
served variable y; and the true unobserved oil quantity ¢; and
leakage rate /; which are both hidden. The model assumes
that the observed quantity is the hidden quantity polluted with
noise. The observed hydraulic quantity y at flight cycle ¢ can
then be modeled as

yi = ¢ +¢€ )
G = Qi1+ lioa(ti—tio1)+ €l 3)
i = lici+e “)

The variable y; is the unobserved (hidden) state quantity g;
plus the observation noise ¢! at flight cycle ¢;. The hidden
quantity is driven by its previous value plus the leakage rate
[ multiplied by the cycle difference ¢; — t;_;. The hidden
quantity is also driven by a white noise term €. The leakage
rate itself is also a hidden state variable and modeled as a
sum of the previous value plus its own noise term €!. This
is a more complex setup compared to the linear regression
system and the estimation can be performed using the Kalman
filter, see (Chui, Chen, et al., 2017). Covariance matrices for
the noise terms need to be defined but the discussion of the
parameter tuning is outside the scope of this paper. Despite
the more complex setup, we have the advantage to explicitly
model both, the quantity and the leakage rate as individual
processes.

The results of the estimate for the given problem are pre-
sented in Figure 3 and 4. Figure 4 shows the estimated leak-
age rate and demonstrates how the model can cope with the
abrupt changes of the leakage and adapts accordingly. The
leakage rate [; is explicitly modelled as a stochastic variable
which is expected to change as implied by the variance of
the noise term €. Imagine that we would actually create an



Asia Pacific Conference of the Prognostics and Health Management Society 2023

—leakage state

-0.01

-0.02

-0.03

Leakage Rate in Liters

-0.04

-0.05

0 20 40 60 80 100 120 140

Flight Index

Figure 4. Leakage rate state estimate for the state space model
as defined in Equation 4.

alert based on the latest estimate of the leakage rate. Such an
alert should be robust regarding data noise to avoid creating
too many false positives. While the linear estimator in Equa-
tion 1 can produce any leakage estimate, the range of leakage
values for the state space models is determined by the noise
distribution in Equation 4. By choosing a suitable variance,
we can control how large a typical update can be which leads
to a more robust estimator. Finally, the state space model is
working natively in an online fashion which can be used for
real time alerting.

3. AI MODELS

There are various Al models which can be applied to time
series forecasting, see for example (Masini, Medeiros, &
Mendes, 2023), (Ahmed, Atiya, Gayar, & El-Shishiny, 2010),
(Zhao, Lu, Chen, Liu, & Wu, 2017). In such a setup, the hy-
draulic quantity y is modeled as a dependent variable

y=f(z)+e 5)

where x is an independent variable, f is some fixed but un-
known function and € is an error term, see (Hastie et al.,
2009). The independent variable = can contain any input fea-
tures, in particular the flight cycles ¢; but also previous values
of the quantity y. The unknown function f is approximated
by a neural net class, for example as a recurrent or long short-
term memory network (LSTM) (Hochreiter & Schmidhuber,
1997). In practice, a neural net type and architecture are cho-
sen and optimized such that, for example, the fitted function
f minimizes the mean squared error

n

> (i — f(wi)? ©6)

=1

1
n

given n observations. The observed quantities are again y;
and x; are the observed independent variables (features) at
time ¢;. The quantity at cycle ¢ + 1 can be predicted by
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Figure 5. Quantity prediction by a LSTM.
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Figure 6. Leakage prediction by an LSTM.

f(xi41), the leakage rate itself as f(z;41) — f(2;). We will
use an LSTM network to perform our analysis. LSTM net-
works, often employed for time series analysis and sequential
data processing, have the strength of learning long-term de-
pendencies. As features, we will take both the current cycle
and the previous quantity, so the network can potentially in-
corporate autoregressive features similar to Equation 3.

The fitted time series for the quantity is shown in Figure 5.
A first look at the quantity figure looks promising, the LSTM
seems to have fitted a curve which does reasonably well at ap-
proximating the input data. The corresponding leakage rate
is shown in Figure 6. The leakage is very noisy as the LSTM
fit is not smooth enough which impacts the first order deriva-
tive. Leakages as high as 200ml are reported, and the estima-
tion couldn’t be used for practical purposes without applying
some smoothing to the original curve. However, even if the
fit to the quantity looks ok, one should ask: What has the
network actually learned? As it is a black box, it’s hard to
tell until one looks at the prediction of the model on unseen
data. This is illustrated in Figure 7 where we ask the model to
predict on a time series which doesn’t have a leakage. If the



Asia Pacific Conference of the Prognostics and Health Management Society 2023

raw data
15 — prediction

Quantity in Liters

0 200 400 600 800 1000

Flight Index

Figure 7. Quantity prediction by an LSTM on unseen data
which doesn’t include a leakage.

model has learned autoregressive features, it would be able to
predict correctly by adding a constant leakage rate to the pre-
vious value. Looking at the figure shows that the model has
learned the time dependence with the exact point of the previ-
ous leakage. It applies this to the new data where no leakage
is present. Training the model on non leakage data and apply-
ing it to leakage data shows the same problem. Note, that the
bad out of sample performance is not driven by extrapolation
as the out of sample data range is well within the domain of
the training data set.

This example shows the dangers of blindly applying Al mod-
els to any problem, focusing too much on finding the best fit
without questioning and challenging the model. Testing Al
models is critical to assess their reliability, robustness, and
applicability.

There are some situations, where an Al model can be
advantageous. If we have many observed features which
all have an influence on the system, it might be hard to
explicitly model the dependence in a state space model as the
system dynamics need to be known. As a concrete example,
the hydraulic quantity is highly dependent on the outside
temperature at the time of the measurement. The volume is
higher when temperatures are high. The quantity dynamics
are consequently not only driven by the flight cycles and the
current leakage rate but also the outside temperature which
should be included as a factor in the estimation. This is fairly
easy to do in both, Equation 5 and 1 by simply introducing
the temperature as an independent variable. Explicit mod-
elling work has to be done in the equation system 3 though,
but a standard physical law can be incorporated easily into
the equation. When more variables are involved and the
relationship is not clear, more complex models could provide
a valid alternative.

4. MODEL GOVERNANCE IN PREDICTIVE MAINTE-
NANCE IN THE AVIATION INDUSTRY

In aviation, the role of predictive maintenance algorithms has
been historically limited by regulatory driven safety require-
ments. For example, consider the case of a maintenance inter-
val for a specific aircraft component, like the hydraulic sys-
tem introduced earlier. Such an interval is typically deter-
mined conservatively via an approval process involving the
aviation authorities and the original equipment manufacturer.
Both, the manufacturer and the authorities have little visibil-
ity of the component lifecycle as the corresponding data is
owned and acquired by the airlines or companies maintaining
those components. If data is available, it is natural to start
applying analytics and models to monitor actual failures with
the goal of calculating an optimal maintenance interval which
is in line with the data. This helps to evaluate the suitability of
the originally proposed maintenance intervals. The outcome
of this could point to shorter or longer maintenance interval
times. Interval times which are calculated to be shorter than
originally assumed are problematic as failures happen more
often than expected. Longer interval times are in the interest
of airlines, as they would save maintenance costs. However,
even if regulators agree to the analytical approach, letting
algorithms determine maintenance intervals raises follow-up
questions related to responsibility should a safety related in-
cidence happen. This topic involves complex ethical discus-
sions and will not be the focus of this section. Instead, we
will assume that algorithms will be approved to do certain
tasks and discuss how the setup could look like including au-
thorities.

A data driven approach always includes some form of ana-
Iytics which generate insights from the data. This can range
from simple statistics (aggregations, histograms) to more ad-
vanced models. In case of a more complex model, the follow-
ing questions need to be answered:

1. Is the chosen model suitable for the given problem?
2. Is enough data available to fit the model?

3.  What is the uncertainty of the model outcome?

4

How sensitive are the model parameters, i.e. how robust
is the model?

e

Can model predictions be explained?

6. What is the model risk, i.e.
wrong model?

the risk of choosing the

Answering those questions would involve debates in a sci-
entific environment as scientists have different opinions on
each of the mentioned points. This will not be different when
authorities are involved who eventually have to agree and
approve the proposed methodology. While aviation author-
ities seem to have started developing governance around Al
models (EASA, 2021), this process is still in an early stage.
Another example where authorities cover analytical models
is given in (FAA, 2018). The document explicitly mentions
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Weibull and Pareto analysis as potential analytical tools with-
out being explicit on how such an analysis should be per-
formed in order to be accepted by the regulators. Sometimes,
it helps to look into other industries to find examples of an
existing process, and we will consider the financial industry
as an example. While aviation and finance are different and
safety regulation is not comparable with the regulation of fi-
nancial markets, financial authorities have a very mature and
well established model governance process. The financial in-
dustry has developed sophisticated models to price and risk
manage financial instruments starting as early as in the 1970s
when the famous Black Scholes pricing model was published
(Black & Scholes, 1973). Since then, very sophisticated mod-
els were developed to price complex financial instruments.
Financial instrument prices are calculated by using stochas-
tic calculus, Monte Carlo simulations and partial differential
equations. Given the importance of the financial industry and
their large role in the stability of economy, regulators need to
guarantee that the pricing and risk methodology is robust and
accurately reports risk and balance sheets. How is this done
in practice? Example references and discussions are provided
in (Federal Deposit Insurance Corporation, 2005), (Federal
Reserve, 2022). Firstly, a split in responsibilities is imposed
on the financial institutions where the role of a model devel-
oper is separated from the role of a model validator. Both of
the roles have different incentives. The model developer is
primarily interested to develop a model to solve a business
problem and get it into the production. The model validator
independently validates that the model is reflecting the true
financial risk by running validations, stress tests and model
reviews. The validator is not subject to the pressure from the
business side, the organizations and reporting lines are sep-
arated. The regulators require all big financial institutions
to have such a setup. In addition, regulators have their own
teams of quantitative modelers whose role is to audit, validate
and challenge the models. All production models need to be
extensively documented and regulators validate them in order
to assess their quality and applicability. This process is well
established and shows how such a cooperation between the
industry and authorities could potentially look like in a world
where complex models are in use.

In aviation, we could think about a slow start where algo-
rithms are applied to non-safety critical components and ap-
proved through an established process by regulators. In a first
step, modelling related organizational structures should be
created in both, the authorities and the industry. A governance
process related to the performance, suitability and deploy-
ment of the algorithm should then be established. Once the
process is established and accepted by both parties, the com-
ponent coverage could be extended. Eventually, one might
think about a similar setup to the financial industry where
model development and model validation are split and au-
thorities run own analytical teams who audit the process.

5. CONCLUSION

After introducing a predictive maintenance case for an air-
craft, we have presented traditional and Al modelling ap-
proaches to solve the problem. We concluded that traditional
models with explicit modelling of the dynamics are advan-
tageous and that blindly applying Al models isn’t recom-
mended. We also discussed that a more complex multivariate
system where explicit modelling is challenging could require
Al Finally, we briefly discussed a potential future model gov-
ernance structure for the discussed models by looking into the
setup in the financial industry.
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