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ABSTRACT

This study aims to assess the effectiveness of the
Transformer-based reconstruction approach for detecting
anomalies in time series data. The reconstruction error-based
anomaly detection method was applied to both multivariate
time series from NASA SMAP/MSL and univariate time se-
ries from UCR. Four deep learning models, including Trans-
former, Dilated CNN, LSTM, and MLP, were compared in
terms of their ability to reconstruct input data. Dilated CNN
outperformed the other models in almost all experimental re-
sults, achieving a 25% higher score than Transformer on the
UCR dataset when trained with random masking, and a 60%
higher score when trained with middle masking. These re-
sults suggest that the Transformer did not perform as well as
expected for anomaly detection based on time series recon-
struction errors, and its inferiority to Dilated CNN may be
attributed to the characteristics of the time series and the lim-
ited training data. Future research should focus on developing
Transformer models that can better capture the properties of
time series data and investigating the relationship between the
model’s performance, data volume, and model complexity.

1. INTRODUCTION

Anomaly detection in systems is extremely important in prac-
tice. In factories and plants, overlooking an anomaly can
lead to the manufacture of defective products, machine break-
downs, supply chain failures, etc., resulting in lower profits
and loss of reliability. In the case of space systems such as
satellites and deep space mission explorers, failure of the mis-
sion due to unobservable anomalies must be avoided. With
the recent advances in computing power and the ability to ac-
quire large amounts of data, anomaly detection using machine
learning, especially deep learning, has become a promising
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approach.

Deep learning methods for time series anomaly detection
are often constructed in an unsupervised or semi-supervised
learning setting. This is due to the scarcity of anoma-
lies and the difficulty of creating labels. Therefore, the
strategy is based on using anomaly scores as errors based
on reconstruction and prediction as self-supervised learn-
ing. Based on methods that calculate anomaly scores based
on errors, such as reconstruction models by AutoEncoder
and prediction models by RNN, there has been develop-
ment in the direction of models such as variational Au-
toEncoder, LSTM, and CNN, as well as in the direction of
learning methods such as adversarial learning and contrastive
learning (Audibert, Michiardi, Guyard, Marti, & Zuluaga,
2020)(Geiger, Liu, Alnegheimish, Cuesta-Infante, & Veera-
machaneni, 2020)(Hundman, Constantinou, Laporte, Col-
well, & Soderstrom, 2018)(Malhotra, Vig, Shroff, Agarwal,
et al., 2015)(Zhang et al., 2019)(Su et al., 2019). And since
2019, we have observed a trend to use Transformer (Vaswani
et al., 2017), an Encoder-Decoder model that is essential for
pre-training language models in natural language processing
(NLP), for time series analysis tasks. In particular, the first
paper using Transformer for multivariate time series anomaly
detection was published in 2021. (Tuli, Casale, & Jennings,
2022)(Xu, Wu, Wang, & Long, 2022)(Jeong, Yang, Ryu,
Park, & Kang, 2023) As has been established as the base
model in natural language processing, it remains to be ver-
ified whether Transformer is superior to other deep learning
models in time series anomaly detection.

As discussed above, Deep learning-based methods for detect-
ing anomalies in time series have demonstrated higher F1
scores compared to traditional methods, and Transformer-
based methods have emerged since 2021. However, con-
cerns have been raised regarding the reliability of datasets and
evaluation metrics (Doshi, Abudalou, & Yilmaz, 2022)(Kim,
Choi, Choi, Lee, & Yoon, 2022), and it is possible that the ap-
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parent performance gains observed in the scores may not be
indicative of actual improvements generated by deep learn-
ing models. The UCR Anomaly Dataset has been identified
as a highly reliable resource that has addressed issues such as
Triviality, Mislabeling, Run-to-failure bias, and Unrealistic
anomaly density found in conventional public datasets.(Wu
& Keogh, 2021) Many deep learning approaches for anomaly
detection assume multivariate time series data due to the ex-
pectation that these models can learn the relationships among
multiple variables. The Transformer model, which lever-
ages the Attention mechanism to effectively process multi-
variate vector sequences, is designed to handle multivariate
inputs. Thus, to the best of our knowledge, only one previous
study has validated the Transformer model using the entire
UCR Dataset (Rewicki, Denzler, & Niebling, 2022). Our re-
search involves evaluating deep learning-based anomaly de-
tection methods using the NASA SMAP/MSL Dataset and
UCR Dataset, and we compare the performance of the Trans-
former model against other models such as CNN, LSTM, and
MLP.

2. METHODOLOGY

We worked with two separate methods in validating Trans-
former’s performance in time series anomaly detection. Be-
fore describing each method, we define time series anomaly
detection.

2.1. Problem setting

First, we provide a common definition. This is the problem
setup used in the first validation and used in many time-series
anomaly detection data sets. Let Test Data be the multivari-
ate time series X̂ = (x̂1, x̂2, . . . , x̂T ) ∈ RT̂×m for which we
want to predict anomaly labels. Let Train Data be a multi-
variate time series X = (x1, x2, . . . , xT ) ∈ RT×m that con-
tains no anomalies, where each variable is the same as this
Test Data and is generated from the same system. T, T̂ is
the length of the time series in the time direction and m is
the number of variables (channels). Through solving tasks
such as reconstruction of partial time series, a deep learning
model f that takes X as input is learned. This learned model
f is used to infer anomaly score S for the test data X̂ . The
model f may be used as is, or further fine tuning may be per-
formed. Thresholds τ = (τ1, τ2, . . . , τT̂ ) are calculated for
those anomaly scores, and if st > τt, the system is considered
abnormal (ŷt = 1) at that time t; otherwise, it is considered
normal (ŷt = 0).

The second validation was performed under another problem
setting. The settings for training and test data and the cal-
culation of anomaly scores are the same. The difference is
the method of determining anomalies. If the point with the
largest value in the calculated anomaly score is included in
the anomaly area, it is considered to be a successful anomaly

Figure 1. Example of Time Series Anomaly Detection. The
upper graph is a univariate time series and the area shown
in blue indicates the anomaly range. The lower graph shows
the calculated anomaly and the area in red represents the pre-
dicted anomaly section.

detection, and if it is not included, it is considered to be a
failure. In the previous problem setting, the threshold value
is used to determine the anomaly location, but in this prob-
lem setting, the most likely anomaly point is determined. The
strength of this problem setting is that it can unambiguously
determine the success or failure of anomaly detection, but it
requires that only one anomaly interval be included in the
target data set. Such data sets are limited and are well repre-
sented by the UCR Anomaly Benchmark Datasets discussed
later.

2.2. Anomaly detection method

The two anomaly detection methods and experimental condi-
tions conducted in our study are described below.

2.2.1. Method1: Simple Reconstruction

This method inputs a time series as a series of vectors at each
time point into a deep learning model and reconstructs the
original input data.

Fig.2 shows how the method 1, Simple Reconstruction works.

• First, scale the time series to the range [−1, 1]
for each variable and divide into windows
[W1,W2, . . . ,WT−w+1],Wt = (xt, xt+1, . . . , xt+w−1)
where w is the length of the window.

• Random masking before entering the model. Masking
is applied to the entire vector at each time point, with a
ratio of 50%.

• The deep learning model will learn to reconstruct each
window.

L = ∥Wt −Model(mask(Wt))∥2

Using the model trained as described above, the test data is
reconstructed in the same way and the mean squared error in
each variable is calculated with respect to the original time
series. In the SMAP/MSL data set described in later sections,
the 0th variable is telemetry, and the other variables are com-
mand information that take values of 0 or 1, so the 0th MSL
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Figure 2. Method1: Simple Reconstruction

is treated as an anomaly score. The dynamic thresholding
proposed by (Hundman et al., 2018) is applied to the derived
anomaly score S.

Transformer, Dilated CNN, LSTM, and MLP were employed
as deep learning models and their performance was com-
pared.

2.2.2. Method2: Sub Window to Vector Reconstruction

In this method, within the divided window, the window is fur-
ther divided into smaller windows, and the smaller windows
are embedded in the vector. The embedded vector sequence
is then fed into a deep learning model, which reconstructs the
original time-series window.

Fig.3 shows how the method 2, Sub Window to Vector Re-
construction works.

Figure 3. Method2: Sub Window to Vector Reconstruction

• First, normalize the time series and divide it into win-
dows of length w with stride 1.

• Each window is further divided into smaller windows,
which are then embedded in vectors. Masking is per-
formed for each channel of each sub-window before be-
ing embedded in the vector. Masking can be either ran-
dom or fixed.

Embedding = Linear(Flatten(mask(SubWindow)))

• Input the embedding vectors into the deep learning
model and reconstruct each sub window. The reconstruc-
tion error (MSE) of the masked part of the sub window
is taken as the loss of the model.

The above training is performed on training data, and the
model is used to reconstruct the masked areas in the test
data. When testing, the selection of the segment to be masked
should be fixed rather than random. Based on the evalu-
ation criteria for the UCR dataset described later, the area
to be masked should be the central sub-window within the
window. This masked reconstruction error is treated as an
anomaly score. This masked reconstruction error is defined
as the anomaly score at the middle time of the window.

If the maximum anomaly score exists in the anomaly range,
the anomaly detection of the test time series is assumed to
be successful; if it does not exist, the anomaly detection is
assumed to be unsuccessful.

Transformer, Dilated CNN, LSTM, and MLP were prepared
as models for this method, and their performance was com-
pared.

2.3. Experiments

We examined Method 1 on the NASA SMAP/MSL dataset,
which is a multivariate time series, and Method 2 on the UCR
Anomaly Benchmark Dataset, which is a univariate time se-
ries.

2.3.1. Experiment1

The SMAP/MSL dataset is a telemetry and command dataset
from the Soil Moisture Active Passive (SMAP) earth observa-
tion satellite and the Mars Science Laboratory (MSL) rover,
affectionately known as Curiosity. Released by Hundman et
al. of NASA JPL, it is a multivariate time series consisting of
a vector at each time point with the telemetry value in the 0th
variable and the send/receive flag (0,1) of the command in the
subsequent variables.

Following previous studies, the evaluation will be conducted
as follows. Predicted anomaly labels are classified as true
positive (TP), false positive (FP), true negative (TN), and
false negative (FN) as described below.

• If an anomaly is predicted at any one point in a true
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Table 1. SMAP/MSL statistics

SMAP MSL
Dimensions 25 55
Unique telemetry channels 55 27
All Train data length 140825 58317
All Test data length 444035 73729
Average Train data length 2560 2160
Average Test data length 8073 2731
Total anomaly sequences 69 36
Point anomalies 43(62%) 19(53%)
Contextual anomalies 26(38%) 17(47%)
Anomalies length (%) 13.1% 10.7%

anomaly section, TP is recorded for the entire anomaly
section.

• Based on these total numbers, prediction ( TP / (TP+FP)
) and recall ( TP / (TP + FN) ) are calculated, and F1
score, which is the harmonic mean of these numbers, is
used as the evaluation metric.

Hyper parameters in each model are shown in Table.2. For
the common parameters, the window siize is 128, the batch
size is also 128. The dropout ratio is 0.1.

The optimization method was AdamW. The learning rate was
0.001 and the weight decay was set to 10−5. The number
of epochs was 100, and the learning rate was scheduled to
decrease by a factor of 0.9 every 30 epochs.

Table 2. Hyper parameters in Experiment1

Transformer Dilated CNN LSTM MLP
d model 64 - - -
d feedforward 64 - - -
Multi-Head 8 - - -
EncoderLayer 3 - - -
DecoderLayer 3 - - -
hidden dim - 64 64 512
kernel size - 3 - -
depth - 7 - -
LSTM Layer - - 1 -

As for Transformer, Dilated CNN, and LSTM, the outputs
of these models were converted to a vector sequence of the
original time series dimensions using a linear layer. MLP’s
model Flatten all input vectors into one-dimensional vectors,
then transform them in the linear layer and return the result to
the original shape of the input.

2.3.2. Experiment2

Public datasets commonly used in time series anomaly detec-
tion research such as Yahoo, Numenta, SMAP, MSL, SDM,
MBA-ECG, SWAT include the problems of Triviality, Mis-
labeling, Run-to-failure bias, and Unrealistic anomaly den-
sity (Wu & Keogh, 2021). The UCR Time Series Anomaly
Archive Dataset are introduce by them as reliable dataset for
time series anomaly detection. However, this dataset is a uni-
variate time series and is not suitable for applying deep learn-

ing methods for multivariate time series. Hence, in Experi-
ment 1 we used the NASA SMAP/MSL, while in Experiment
2 we will use the UCR dataset for a more meaningful com-
parison.

The dataset consists of 250 univariate time series of various
types. Each time series has a training period in the first half
and a test period in the second half, with only one anomaly
within the test period.

Table 3. UCR Anomaly Dataset statistics

total train size 5302449
total test size 14051317
average train size 21210
average test size 56205
total anomaly length 49363
average anomaly length 197
anomaly ratio 0.35%

In the UCR dataset, the success or failure of anomaly de-
tection is measured by whether the time with the highest
anomaly score is included in the anomaly range. In order
to calculate this, UCR Score is defined as follows.

• Let L be length of anomaly

L = end− begin + 1

• Let p be the index representing the time of the highest
anomaly score.

• If p ∈ (begin−max(100, L), end +min(100, L)), the
anomaly detection is correct.

• The UCR score is the percentage of correct answers in
all 250 time series.

Hyper parameters in each model are shown in Table.4. For
the common parameters, the window size is 512, the batch
size is also 512. The dropout ratio is 0.2. The sub-window
size is 16, this stride is 8, and the model input size is 16.

The optimization method was AdamW. The maximum learn-
ing rate was 0.0001 and one cycle LR scheduler was used
with default parameters. The number of epochs was 20.

Table 4. Hyper parameters in Experiment2

Transformer Dilated CNN LSTM MLP
d feedforward 64 - - -

Multi-Head 8 - - -
EncoderLayer 3 - - -
DecoderLayer 3 - - -

hidden dim - 64 64 64
kernel size - 3 - -

depth - 3 - -
LSTM Layer - - 1 -
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3. RESULTS

To summarize the results, the Dilated CNN performed best in
almost all experiments. Transformer did not perform as well
as expected.

3.1. Results for experiment1

Table.5 shows the averages of the evaluation metrics of
anomaly detection for each channel in SMAP and Table.6
shows the evaluation metrics calculated from the sum of TP,
TN, FP, and FN in each channel. n is the number of detected
anomalies.

Table 5. Evaluation metrics on average of each channel in
SMAP

F1 precision recall ROU/AUC n
Transformer 0.7126 0.6763 0.8187 0.901 55
Dilated CNN 0.7262 0.6881 0.854 0.9211 57
LSTM 0.7038 0.6667 0.8187 0.9002 55
MLP 0.7419 0.7235 0.8599 0.9238 58

Table 6. Evaluation metrics calculated on sum of TPs in
SMAP

F1 precision recall
Transformer 0.8374 0.884 0.8631
Dilated CNN 0.9329 0.918 0.9484
LSTM 0.8917 0.8777 0.9062
MLP 0.9141 0.9116 0.9166

Table.7 shows the averages of the evaluation metrics of
anomaly detection for each channel in MSL and Table.8
shows the evaluation metrics calculated from the sum of TP,
TN, FP, and FN in each channel. n is the number of detected
anomalies.

Table 7. Evaluation metrics on average of each channel in
MSL

F1 precision recall ROU/AUC n
Transformer 0.5787 0.5636 0.6742 0.8267 23
Dilated CNN 0.6559 0.6501 0.7309 0.8566 25
LSTM 0.6536 0.6261 0.7631 0.8701 26
MLP 0.5414 0.531 0.6121 0.7953 21

3.2. Results for experiment2

At inference time, the central sub-window in the window was
masked. Table.9 compares the UCR Score for the two mask-
ing methods used in training, 10% random masking and the
same central masking used in inference.

4. DISCUSSION

The purpose of this study is to verify the performance of
the Transformer-based reconstruction method for time series
anomaly detection.

Table 8. Evaluation metrics calculated on sum of TPs in MSL

F1 precision recall
Transformer 0.7083 0.7548 0.6671
Dilated CNN 0.7574 0.7893 0.7279
LSTM 0.7462 0.7656 0.7277
MLP 0.6828 0.7771 0.6089

Table 9. UCR Score on masking strategy on training

random mask (0.1) middle mask
Transformer 0.2 0.24
Dilated CNN 0.32 0.3
LSTM 0.236 0.244
MLP 0.236 0.304

Time series anomaly detection methods based on deep learn-
ing have produced higher F1 scores than conventional meth-
ods, and Transformer-based methods have been emerging
since 2021. However, problems with the reliability of datasets
and evaluation metrics have been mentioned, and it is pos-
sible that deep learning models are not generating the per-
formance improvements that are visible in the scores. The
UCR Anomaly Dataset is considered to have resolved the
Triviality, Mislabeling, Run-to-failure bias, and Unrealistic
anomaly density observed in conventional public datasets,
and can be judged to be highly reliable. One of the rea-
sons why deep learning is being sought for anomaly detec-
tion is the expectation that it can successfully learn the rela-
tionships among multivariates, so many deep learning meth-
ods are based on the assumption of multivariate time series
anomaly detection. The Transformer is a model that effec-
tively processes multivariate vector sequences using the At-
tention mechanism, and it assumes multivariate input. There-
fore, to the best of our knowledge, there is only one case in
which the Transformer model has been validated using the
entire UCR Dataset (Rewicki et al., 2022). In our study, we
validated anomaly detection methods based on deep learning
reconstruction against the UCR Dataset and verified Trans-
fromer’s performance against CNN, LSTM, and MLP.

Experimental results show that Transformer does not perform
as well as other deep learning models (Dilated CNN, LSTM,
MLP). Rather, Dilated CNN scored the best in almost all ex-
perimental results, especially in UCR Score, which was 60%
higher in random masking and 25% higher in middle mask-
ing for anomaly detection. There are two possible reasons for
this.

• Compared to natural language and images, time series
have sparse information. Therefore, understanding the
semantic structure by Self-Attention may not be suitable
for capturing the features of time series. The reason why
the performance of the Dilated CNN, which gathers in-
formation sparsely, was good is because it expands the
receptive field in order from the neighborhood, so it may
be able to extract the information near and far as features
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in a good balance. Self-Attention takes inner products
in parallel, so it may not be efficient for time series with
sparse information.

• Currently, each time-series data is trained in the Train
section and anomaly detection is verified in the Test sec-
tion. Some time series data have a data length of 1500,
which is a very small amount of data for deep learning.
Transformer performance could be improved by learn-
ing long time-series data. As the Transformer’s scaling
law has been confirmed in natural language processing
(Kaplan et al., 2020), performance may improve as the
scale of training is increased. In time series anomaly de-
tection, it is necessary to verify the relationship between
the amount of data and the scale of model parameters.

5. CONCLUSION

A time series anomaly detection method based on reconstruc-
tion error was tested on multivariate time series of NASA
SMAP/MSL and univariate time series of UCR, respectively.
Transformer, Dilated CNN, LSTM, and MLP were compared
as deep learning models for reconstructing the input. The
Dilated CNN performed the best in almost all experimen-
tal results, scoring 25% higher than the Transformer on the
UCR dataset for training with random masking, and 60%
higher than the Transformer for training with middle mask-
ing. Transformer did not perform as well as expected. The
performance of the Transformer was not high for anomaly
detection based on time series reconstruction errors, and its
inferiority to the Dilated CNN may be due to the nature of
the time series and the small training scale. In the future,
it is necessary to develop a Transformer model that incorpo-
rates the properties of time series and to verify the relation-
ship between the performance of the Transformer model and
the amount of data and the scale of the model.
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