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ABSTRACT

Bearings and gears are important components in rotating
machinery, and the diagnosis of faults in bearings and gears
has always been an important topic. Currently, data-driven
fault diagnosis is a better method. However, under actual
working conditions, domain shift can easily occur due to
different operating conditions, leading to difficulties in
transfer learning and significantly reducing the diagnostic
performance of the model. Re-labeling the fault types of the
model is time-consuming and costly. To overcome these
difficulties, a new unsupervised transfer learning framework
based on the fusion of joint distribution and adversarial
networks has been introduced for the fault diagnosis of
bearings and gears in rotating machinery. The joint
adaptation network learns the transfer network by aligning
the joint distribution of multiple specific domain layers
across domains, based on Joint Maximum Mean
Discrepancy (JMMD) to achieve domain alignment. At the
same time, the domain classifier in the adversarial network
is used to minimize the domain classification loss as domain
distribution difference to minimize domain shift. The fusion
of these two methods achieves domain alignment, reduces
model training time, and improves the accuracy and stability
of the model. The experimental results demonstrate that the
proposed model framework exhibits excellent performance
in detecting and classifying different types of faults. The
new model framework also demonstrates outstanding
performance across various fault detection and classification
tasks.

1. INTRODUCTION

With the rapid development of manufacturing industry,
rotary machinery has gradually become a key equipment in
the mechanical manufacturing field, and higher
requirements have been put forward for its intelligent
maintenance [1]. The reliability and performance of
bearings and gears are one of the key factors in mechanical
system. For high-demand applications such as aerospace
and medical equipment, the quality and reliability
requirements for bearings and gears are higher. With the
development of intelligent fault diagnosis field, methods
based on deep learning have become popular. Janssens et al.
[2] first applied convolutional neural network (CNN) to the
fault diagnosis of bearings. Although traditional deep
learning methods have achieved certain achievements in the
field of fault diagnosis, past fault diagnosis methods are
mainly based on the same working environment and
conditions, which have great limitations. When facing the
need for re-labeling due to different workloads, the model
needs to be retrained, wasting a lot of time. Therefore, this
paper proposes a diagnostic method based on transfer
learning, which speeds up the learning process. Transfer
learning can be mainly divided into four categories: (1)
Network-based, (2) Instance-based, (3) Mapping-based, and
(4) Adversarial-based [3]. Network-based fault diagnosis
refers to directly transferring the parameters trained in the
source domain as part of the testing process, or fine-tuning
the network parameters using a small amount of labeled data
in the target domain. Zhou et al. [4] proposed a deep
learning framework combining transfer learning and
transposed convolution, Li et al [5] processed data into
images as inputs to the transfer learning model, and trained
and fine-tuned VGG19. The basic concept of
mapping-based method refers to mapping instances from the
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source domain and the target domain to the feature space
through a feature extractor. Mapping-based methods mainly
include: (1) Minkowski distance, (2) KL divergence
(Kullback Leibler, KL), (3) CORAL alignment, (4)
Maximum mean discrepancy (MMD), and (5) Multikernel
MMD (MK-MMD). Qian et al. [6] proposed a new method
for assessing distribution differences called Auto-balanced
High-order Kullback-Leibler (AHKL) divergence, which
can evaluate first-order and high-order moment differences
and automatically adjust the weights between them. They
also developed Smooth Conditional Distribution Alignment
(SCDA), which aligns the conditional distribution by
introducing soft labels instead of using widely used
pseudo-labels. Zhu et al. [7] calculated domain loss through
a linear combination of multiple Gaussian kernels, which
results in greater adaptability compared to a single kernel.
These two methods reduce distribution differences and learn
transferable features. The effectiveness of the proposed
methods was validated through experiments on transfer fault
diagnosis.

Adversarial-based fault diagnosis refers to reducing the
feature distribution differences between the source and
target domains by utilizing a domain discriminator. Ganin
et al. [8] proposed the Domain Adaptation by
Backpropagation (DANN) architecture, which equates the
loss of the domain discriminator in GAN to the distribution
distance between domains.

Compared with traditional fault diagnosis methods, whether
based on single-kernel MMD, multi-kernel MK-MMD, or
DANN architecture, they were all proposed to solve

, based on the common assumption of

. This assumption is relatively
strong and does not conform to actual working conditions,
posing higher requirements for training process. Therefore,
this paper proposes a new assumption,

, based on the
conditions that the conditional and marginal distributions
are different. In order to address this issue, a multilinear
adjustment is proposed to capture the inter-covariance
between feature representation and classifier prediction for
improved discriminability, and an entropy adjustment is
proposed to control the uncertainty of classifier prediction
for ensuring transferability. Finally, a framework combining
JMMD and adversarial networks is proposed. We proposed
an effective method to enhance transfer learning models for
fault diagnosis. At the same time, we conducted
comparative experiments to compare the proposed method
with other commonly used transfer learning methods. The
proposed method is verified on the gear dataset from
Northeast Forestry University and the bearing dataset from

Jiangnan University, and the results show that the proposed
method effectively improves the stability and accuracy of
the transfer learning model for fault diagnosis.

2 PREPARATORWORK

2.1 PROBLEM DEFINITION

Unsupervised deep transfer learning with overlapping
categories is defined as follows: it assumes that the labeled
data from the source domain is available to predict the
unlabeled data from the target domain. In this study, we
focus on the case where the fault categories of the source
and target domains are the same. We introduce some basic
notation and assume that the labels in the source domain are
available. The source domain is defined as follows:

We define some basic symbols, where represents the

source domain, denotes the ith sample, is the

union set of all samples, represents the th label of the

ith sample, is the union set of all different labels, and

represents the total number of samples in the source

domain. Additionally, assuming that the labels of the target
domain are not available, the following definitions are made
for the source domain.

In the above equation, represents the target domain,

is the th sample, is the union of all samples,

and is the total number of target domain samples. Fig.1
shows the comparison before and after domain adaptation.
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Fig 1. Domain adaptive before and after comparison chart.

2.2 JMMD(JOINTMAXIMUMMEAN DISCREPANCY

JMMD is a method used to measure the distance between

joint distributions and , as shown in
Fig.2, which is a system diagram of a joint distribution
network structure. Many methods aim to solve the transfer
learning problem by adding the difference between the

marginal distributions and of the source and
target domain errors. MMD, as a kernel two-sample test
statistic, has been widely used to measure the distribution

differences between and .The JMMD
formula is as follows, as proposed in [9]:

which is the feature map

in the tensor product Hilbert space, is the higher-level

network architecture, denotes the layer number,

represents the th layer activation generated by the source

domain, and represents the th layer activation
generated by the target domain.

Therefore, the total loss function of applying the
JMMD method to the field of bearing fault diagnosis is

shown in Eq.4, where represents the classification loss

and represents the coefficient for measuring distance
using the JMMD method.

Fig.2. The architectures of Joint Adaptation Network.

2.3 CONDITIONAL ADVERSARIAL DOMAIN ADAPTATION

The key to the Conditional Domain Adversarial Network
(CDAN) [10] model is a novel conditional domain
discriminator, which takes the cross-covariance between the
domain-specific feature representation and the classifier
prediction as a condition. Further, the condition of the
domain discriminator is placed on the uncertainty of the
classifier prediction, and the discriminator is prioritized for
examples that are easy to transfer. The entire system can be
solved in linear time through backpropagation [11]. To
understand the CDAN structure, we first define some basic

symbols. Firstly, we need to define a multilinear map ,
which represents the outer product of multiple random

vectors. If given two random vectors and , the

average mapping can capture the complex
multimodal structure within the data. In addition,
cross-covariance can successfully model the joint

distribution , therefore, the loss for conditional
adversarial is defined as follows:

In order to reduce prediction uncertainty, entropy criterion

is used to define the uncertainty of the

classifier prediction. corresponds to the predicted

probability of the true label . According to the
entropy-aware weight function in Eq. 5, difficult-to-transfer
samples are reweighted with lower weights in the modified
conditional adversarial loss in Eq.6.

Through the aforementioned adversarial training, the feature
generator can generate feature distributions that are similar

3



Asia Pacific Conference of the Prognostics and Health Management Society 2023

to the input data, while the domain discriminator has
stronger domain discrimination ability.

2.4 PROPOSEDMETHODS

The proposed approach in this paper combines the two
methods presented in Sections 2.2 and 2.3. One is based on
mapping, and the other is based on adversarial training, both
of which have achieved some success in transfer learning.
However, they are still far from sufficient. The main goal of
this paper is to improve the model's performance by
combining these two methods to achieve breakthroughs in
the field of fault diagnosis. Fig.3 illustrates the flowchart of
the proposed method, where the total loss is obtained by
combining Eq.4 and Eq.6.

Fig.3 . This paper presents the model architecture diagram.

3. EXPERIMENTAL VALIDATION

The experiment in this study uses both bearing and gear
datasets to fully verify the advantages of the proposed
model that combines JMMD and domain adversarial CDAN
algorithms. By comparing with traditional transfer learning
algorithms, In comparison to conventional methods, the
model framework exhibits higher accuracy and stability in
detecting and classifying different types of faults.

The experiment is designed to compare the proposed
method with two existing domain adaptation methods: Deep
Adaptive Network (DAN) based on MK-MMD and
Conditional Adversarial Domain Adaptation with Entropy
minimization (DANN+E) based on CDAN. Six groups of
comparison experiments are conducted: Method 1, a
composite method based on JMMD and CDAN+E; Method
2, a composite method based on MK-MMD and CDAN+E;
Method 3, a method based on JMMD; Method 4, a
composite method based on MK-MMD; Method 5, a
method based on CDAN+E; and Method 6, a baseline
method without using any transfer learning method.

3.1 DATASET DESCRIPTION

The two datasets mainly used in this paper are the Jiangnan
University Bearing Dataset (JNU) and the Northeast
Forestry University Gear Dataset (NEFU), which are
described in detail below.

(1) Jiangnan University Bearing Dataset

The JNU bearing dataset has a sampling rate of 50 kHz.
This study conducted fault diagnosis tests using two types of
rolling bearings, N205 and NU205, to obtain signals under
normal and faulty conditions. N205 bearings were used for
normal, outer ring defect, and rolling ball defect states,
while NU205 bearings were used for inner ring defect
states. These faulty bearings were manufactured using a
wire cutting robot, and Table 1 lists the specifications, fault
sizes, and other necessary information of the test bearings.
Each type of fault data (including normal bearings) was
sampled at three different speeds: 600, 800, and 1000 rpm.
Three different transfer learning conditions were established
based on these speeds. 600 rpm corresponds to G1, 800 rpm
corresponds to G2, and 1000 rpm corresponds to G3. This
paper constructed a total of six transferable states for
experimental validation in the JNU bearing dataset:
G1→G2、G1→G3、G2→G3、G2→G1、G3→G1, and
G3→G2.

Table 1. Bearing information for verification.
Contents N205 Nu205

Bearing outer diameter 52mm 52mm
Bearing outer diameter 25mm 25mm

Bearing width 15mm 15mm
Bearing roller diameter 7mm 7mm
The number of the rollers 10 11

Contact angle 0 rad 0 rad
Out-race defect(width×depth) 0.3×0.25 mm Early stage

Rolling element defect(width×depth) 0.5×0.15 mm Early stage
Inner-race defect(width ×depth) 0.3×0.25 mm Early stage
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3.2 EXPERIMENTAL VALIDATION USING THE BEARING
DATASET FROM THE JNU

Case 1:six groups of experiments were set up in this study,
compared with the method proposed in this paper. The
accuracy is shown in Table 2, the confusion matrix is shown
in Fig.4, and the F1-score is shown in Fig.6. This score
takes into account both precision and recall, providing a
balanced measure of the model's classification performance
across different fault types. In addition, the t-SNE plot of
G1→G2 in Method 1 was used to visualize the classification
process of model for different faults is shown in Fig.5.

Furthermore, the results presented in Table 2 demonstrate
the superior performance of our proposed method across
various transfer scenarios. With accuracies of 97.79%,
96.92%, 98.70%, 99.18%, 88.72%, and 99.72%, our
approach consistently outperformed other existing methods.
This improvement in accuracy highlights the effectiveness
and reliability of our method in handling different types of
faults.

Moreover, Fig. 6 provides a visual representation of the
F1-Score for each fault type in different transfer states.
Notably,

the red bars representing our method (Method 1)
consistently exhibit higher F1-Scores compared to the other

colors. This observation further supports the robustness and
efficacy of our proposed method in accurately classifying
and identifying fault types.

In essence, the effectiveness of our method is mainly due to
the combination of JMMD and CDAN+E, which measures
the distance between domains at multiple scales. JMMD
evaluates the visible distance between domains, while
CDAN+E evaluates the implicit distance between domains.
Compared with traditional MK-MMD, JMMD considers
both the marginal and conditional distributions. Although
MK-MMD is an improvement of the MMD method, the
MK-MMD used in this paper is still based on the
assumption of the same conditional distribution. This
assumption will have different negative effects under
different working conditions, especially in cases of
significant differences in working conditions. CDAN+E
quantifies the uncertainty of the classifier's predictions

through entropy criterion , where

is a quantity and is the probability of predicting class

. Each training factor of the conditional domain
discriminator is reweighted.

Table 2. The accuracy rate in each migration state in Case1.
Task G1→G2 G1→G3 G2→G1 G2→G3 G3→G1 G3→G2

Method1 97.79 96.92 98.70 99.18 88.72 99.72
Method2 97.54 95.38 93.44 98.55 88.64 99.43
Method3 97.52 96.26 96.46 98.83 87.79 98.92
Method4 96.95 95.04 97.22 97.29 87.07 98.98
Method5 94.72 96.06 80.64 96.75 84.75 98.76
Method6 95.76 89.93 57.28 96.03 78.03 96.53
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Fig. 4. Confusion matrices for the proposed method in Case1.

Fig. 5. Feature visualization based on t-SNE for the proposed method in Case1.

4 CONCLUSION

Unsupervised cross-domain fault diagnosis has always been
a research challenge. In order to further improve the
accuracy of unsupervised cross-domain diagnosis and
enhance the model's cross-domain performance and
generalization ability, this paper proposes a diagnostic

model based on the combination of JMMD explicit distance
and CDAN+E implicit distance. Firstly, the joint distribution
properties of JMMD are used to solve the weak conditional
assumptions of traditional methods based on approximating
conditional distributions or marginal distributions to be
equal, which can be more closely related to real industrial
applications.
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Fig. 6. F1-score evaluation results for each comparative method in Case 1.
In order to further improve the performance of the model,
CDAN+E is introduced to solve the problem of adjusting
classification in the original multi-modal distribution of
different domains in traditional domain adversarial models.
Finally, through the fusion of architectures and verification
on two datasets, the effectiveness of the proposed method is
demonstrated. Unsupervised learning is the mainstream
direction for the future development of fault diagnosis, and
it is also a challenging direction. Solving problems in the
target domain without labels is difficult. Moreover, the
limitation of this study is that the fault types in the source
and target domains are completely the same. Therefore, we
plan to conduct research in the open domain direction,
which can classify even when faced with fault features that
have not appeared in the source domain.
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