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ABSTRACT 

This paper presents a methodology designed for the 

Prognostics and Health Management (PHM) Asia-Pacific 

2023 Conference Data Challenge. In particular, this study 

targets the health assessment of spacecraft propulsion 

systems. The challenge involved analyzing and categorizing 

a simulation-generated dataset that included four unique 

spacecraft and multiple health conditions, such as normal 

operation, bubble anomalies, and solenoid valve faults in 

various system locations. The proposed approach uses a two-

step process. First, a model based on similarity measures is 

employed to classify the data into one of four health states. 

Then, a model incorporating physics-inspired features is 

utilized in solenoid valve faults to identify the fault location 

and estimate the valve opening ratio. The validity of the 

model is confirmed through cross-validation with the training 

dataset, which achieved a flawless total score across all 

permutations. Our method effectively categorizes the test 

data, including cases from a spacecraft not covered in the 

training, thereby securing a top position in the competition. 

The findings highlight the strength of our proposed model, 

which uses physics-inspired features to predict valve opening 

ratios, proving useful in managing and interpreting complex, 

unfamiliar spacecraft health data.  

1. INTRODUCTION 

Spacecraft propulsion systems serve as the fundamental 

mechanism that facilitates the navigation of spacecraft 

through space. Their reliable and efficient functioning is of 

paramount importance, making their health management a 

crucial aspect. Prognostics and Health Management (PHM) 

play a pivotal role in maintaining this reliability by enabling 

the early detection and diagnosis of potential issues or 

anomalies in propulsion systems.  

The main tasks involved in PHM typically include anomaly 

detection, classification, and regression (Lee et al.,2014) 

(Tsui et al., 2015). Anomaly detection aims to identify 

departures from normal operations, which may signal 

potential unanticipated system failures or faults. 

Classification is employed to diagnose known faults, 

differentiating them from normal operational states and other 

types of known faults. Conversely, regression is used to 

gauge the extent or severity of a given fault, providing a 

quantitative measurement of the impact of the fault on the 

system's operation. 

A similarity-based method is often adopted for PHM tasks 

(Wang et al., 2008) (Duan et al., 2021). This method operates 

based on the principle of comparing the current system state 

to a library of known states or fault patterns. A similarity-

based anomaly detection method recognizes deviations from 

normal operation by juxtaposing real-time data with baseline 

or normal operational data. The more significant the 

deviation, the higher the likelihood of an anomaly. For 

instance, Chang et al. (2014) present a similarity-based 

method to expedite the qualification process of LEDs. This 

method analyses and clusters LED spectral data to identify 

the early indicators of degradation. Hendrickx et al. (2020) 

enhance a fleet-based industrial asset monitoring framework 

by refining the anomaly scoring system with machine 

similarities within the fleet, permitting more precise, 

continuous, and individualized scoring that accurately 

pinpoints machine anomalies. 

In classification tasks, the same concept is utilized; However, 

the current state is compared to multiple known fault 

conditions. The system condition or fault that most closely 

aligns with the current state is then determined as the 

probable state of the system. For example, Senanayaka et al. 

(2022) propose an innovative method of classification for 

machine state prediction using time-series signals in 

predictive maintenance, termed similarity-based multi-

source transfer learning. The model is validated using 

datasets gathered from various rotating machinery, showing 

superior performance over conventional methods. The 
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effectiveness of the similarity-based method depends on the 

quality and thoroughness of the comparison library, 

underscoring the necessity for a diverse and well-represented 

dataset of system conditions and fault patterns. 

Data-driven models typically form the foundation of PHM 

tasks. When constructing such models, incorporating 

domain-specific knowledge, such as the physical laws that 

dictate a system's behavior, can prove advantageous. This is 

often accomplished through the meticulous design of the 

model's features (Ompusunggu and Hostens, 2021). These 

physics-informed features often enhance the performance 

and interpretability of the model, particularly when the 

available data are sparse or noisy. 

In this study, we outline the development of a data-driven 

model to assess the health conditions of spacecraft propulsion 

systems for the PHM Asia-Pacific 2023 Conference Data 

Challenge. 

2. PROBLEM STATEMENT 

The PHM Asia-Pacific 2023 Conference Data Challenge 

focuses on Prognostics and Health Management (PHM) for 

spacecraft propulsion systems, with the system's schematic 

illustrated in Figure 1. The training dataset provides 177 sets 

of synthetic data produced by simulations. Each set includes 

measurements from seven pressure sensors labeled P1 to P7, 

as depicted in Figure 1. These measurements were taken at a 

sampling rate of 1 kHz, over a duration of 1200 ms, and 

encompass three cycles of valve open-close operations, as 

shown in Figure 2. 

The dataset covers three distinct spacecrafts, labeled #1 

through #3, and it encompasses three different health 

conditions: normal operation, bubble anomalies, and solenoid 

valve faults. Bubble anomalies could potentially occur in one 

of the eight locations, indicated as BV1 and BP1 through 

BP7, as shown in Figure 1. Similarly, solenoid valve faults 

could potentially occur in one of the four valves labeled SV1 

through SV4, as shown in Figure 1. In the event of a fault, the 

solenoid valves may open anywhere from 0% to 100% of 

their full range. Under normal conditions, they open 100%. 

Note that the training data only include cases in which the 

valve open ratios are 0%, 25%, 50%, 75%, and 100%.  

The aim of the competition is to utilize the 177 training data 

points to evaluate the health conditions of the 46 test data 

points. It should be noted that the test set includes an 

unknown anomaly mode not present in the training set, and 

participants should remain cognizant of this possibility. If a 

bubble anomaly is detected, its location must be specified. 

Similarly, in case a solenoid valve fault is identified, both the 

location of the fault and the degree to which the valve is open 

should be indicated. Half of the test data originates from 

spacecraft #4, which is not represented in the training set. 

 

Figure 1 Schematic of experimental propulsion system 

 

Figure 2 Typical pressure profile 

 

The evaluation metric is as follows: 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 =
∑ 𝑆𝑐𝑜𝑟𝑒𝑖

𝑁𝑡𝑒𝑠𝑡
𝑖

∑ 𝑆𝑐𝑜𝑟𝑒(𝑚𝑎𝑥)𝑖
𝑁𝑡𝑒𝑠𝑡
𝑖

 (1) 

𝑆𝑐𝑜𝑟𝑒𝑖 = 𝑇1𝑖 + 𝑇2𝑖+𝑇3𝑖 + 𝑇4𝑖+𝑇5𝑖 (2) 

Here, 𝑁𝑡𝑒𝑠𝑡  is the number of test data. 𝑇1𝑖  to 𝑇5𝑖  are as 

follows: 

𝑇1𝑖: Classification of normal/abnormal condition (10 points) 

𝑇2𝑖 : For the data correctly detected as abnormal, 

classification of bubble contamination anomaly/solenoid 

valve fault/ unknown fault (10 points) 

𝑇3𝑖 : For the data correctly identified as bubble 

contamination, identification of bubble location (10 points) 

𝑇4𝑖: For the data correctly identified as solenoid valve fault, 

identification of the failed valve: (10 points) 

𝑇5𝑖 : For the solenoid valve correctly identified as fault, 

prediction of the opening ratio: max (20-|truth – prediction|, 

0) 

For spacecraft #4, 𝑇1𝑖  to 𝑇5𝑖  are doubled, considering the 

difficulty. 𝑆𝑐𝑜𝑟𝑒(𝑚𝑎𝑥)  is the score if there were no 

prediction errors. Therefore, the total score can range from 

0% to 100%. 
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3. METHODOLOGY 

3.1. Overview 

Figure 3 illustrates the flowchart of the methodology we 

utilized in this data challenge. Health assessment is 

conducted in two primary steps. Initially, the data is 

categorized into one of the four health conditions across all 

the datasets. For bubble anomalies, we also determine their 

locations, leading to the classification of data into 11 distinct 

categories. This is achieved using a similarity-based model 

constructed on the extracted data. Subsequently, the data 

identified as being affected by a solenoid valve fault 

undergoes a detailed diagnosis. The fault location is 

determined by leveraging the extracted features, and the 

valve open ratio is estimated. The specifics of each process 

are described in detail in the following sections.  

 

Figure 3 Methodology Overview 

3.2. Regime Separation 

Portions of the sensor data relevant for classification are 

isolated. Although the data encompasses three cycles of the 

valve opening and closing, only the information from the 

initial valve opening is extracted. In other words, out of the 

total 1.2 seconds of data, only the first 0.1 seconds is 

employed in the classification model. This approach is taken 

because, unlike in the second and third cycles, the hydraulic 

pressure in the first cycle remains consistent at the initial state 

of 0 seconds, eliminating any variation in hydraulic pressure 

behavior due to individual or sample differences. 

To quantify this variability, an analysis of the training dataset 

is performed using Dynamic Time Warping (DTW). DTW is 

a distance-based method that measures the similarity between 

two time-series data sets (Berndt & Clifford, 1994). By 

aligning the time axes of the data, DTW permits non-linear 

time warping, thereby facilitating the discovery of an optimal 

matching path and the computation of distance. This 

mechanism enables an effective comparison of time-series 

data.  

The means and variances of the in-class DTW distance d are 

calculated for each health condition using the following 

equations: 

𝑑𝑖,𝑗 = (𝐷𝑇𝑊(𝑋𝑖,𝑗 , �̅�𝑗 )),     �̅�𝑗 =  ∑ 𝑋𝑖,𝑗𝑖  (3), (4) 

Here, 𝑋𝑖,𝑗 represents the i-th training sample with j-th health 

condition. 

Table 1 presents the calculation results of mean and standard 

deviations of 𝑑𝑖,𝑗 . These findings demonstrate that there is no 

bias or variation between samples within the same health 

condition during the first 0.1 seconds. This also applies to the 

solenoid valve fault conditions. Consequently, this segment 

of data can be utilized to achieve robust estimation. 

 

 

 

 

Table 1 In-class DTW distance (mean ± std.) 

Conditions 0.0 – 0.1 sec 0.1 – 0.4 sec 0.4 – 0.5 sec 0.5 – 0.8 sec 0.8 – 0.9 sec 0.9 – 1.2 sec 

Normal 0.0±0.0 174.1±61.4 10.2±3.4 174.8±61.2 10.6±3.6 175.6±63.5 

Bubble: BP1 0.0±0.0 168.5±28.0 10.6±1.4 167.3±28.3 10.8±1.2 166.5±27.0 

Bubble: BP2 0.0±0.0 134.5±24.5 5.4±1.1 135.7±13.2 4.7±0.9 137.7±13.3 

Bubble: BP3 0.0±0.0 140.6±14.9 4.8±0.6 137.0±14.0 3.7±0.3 131.6±10.9 

Bubble: BP4 0.0±0.0 142.1±38.1 6.3±2.0 140.6±30.4 7.3±2.4 145.5±36.7 

Bubble: BP5 0.0±0.0 165.0±39.0 14.1±1.7 161.9±34.5 11.2±1.1 163.0±34.4 

Bubble: BP6 0.0±0.0 119.7±31.6 3.2±0.8 121.4±31.9 3.0±0.4 121.2±32.0 

Bubble: BP7 0.0±0.0 135.5±25.9 2.4±0.5 152.2±36.0 6.8±1.7 151.8±34.3 

Bubble: BV1 0.0±0.0 180.9±23.2 10.4±1.4 187.8±17.3 12.4±2.6 184.5±12.7 



3.3. Similarity-Based Classification Model 

Based on the processed data and extracted features, a 

classification model is created. The flowchart detailing this 

classification model is presented in Figure 4. 

 

Figure 4 Classificaiton Process 

The DTW algorithm is used to compute the distance from the 

test data to all the instances in the training data. Subsequently, 

the instance in the training data closest to the test data is 

determined. Classification of the test data is then 

accomplished using the label and distance of the closest data. 
If the minimum distance, denoted as 𝛿𝑖 , is greater than the 

threshold value β, it is considered an unknown falt. If 𝛿𝑖 is 

less than the threshold value α, the label of the data closest to 

the distance is used as the label of the test data. If neither is 

the case, the data are considered to be a solenoid valve fault. 

The threshold β used for anomaly detection to identify 

unknown faults, is established from the maximum distance 

among known classes in the training data. Since the 

Unknown Fault data is not included in the training data, β 

cannot be determined by hyperparameter tuning. Therefore, 

in this method, β is determined by the 3σ rule (Pukelsheim, 

F.,1994) based on the distance 𝑥𝑖 from all known data. 𝛿𝑖 and 

β are obtained by the following equations: 

𝛿𝑖 = min
𝑗≠𝑖

(𝐷𝑇𝑊(𝑋𝑖
𝑡𝑒𝑠𝑡 , 𝑋𝑗

𝑡𝑟𝑎𝑖𝑛)) (5) 

𝑥𝑖 = min
𝑗≠𝑖

(𝐷𝑇𝑊(𝑋𝑖
𝑡𝑟𝑎𝑖𝑛, 𝑋𝑗

𝑡𝑟𝑎𝑖𝑛)) (6) 

𝜇𝑥 =  ∑ 𝑥𝑖𝑖  , 𝜎𝑥 = √
∑ (𝑥𝑖−𝜇𝑥)𝑖

𝑁
  (7), (8) 

𝛽 = 𝜇𝑥 + 3𝜎𝑥 (9) 

Here, 𝑋𝑖
𝑡𝑒𝑠𝑡 is i-th test sample, 𝑋𝑖

𝑡𝑟𝑎𝑖𝑛 is i-th training sample 

and 𝑁 equals to the number of training samples.  

From the data analysis results in Table 1, 𝛿𝑖 is assumed to be 

0 when the test data is in a known health condition. Therefore, 

α is set to 0.1 as a sufficiently small value considering 

numerical errors. 

Contrary to healthy and bubble conditions, the data related to 

a solenoid valve fault vary in correlation with the valve open 

ratio. Consequently, the DTW distance can fluctuate even 

when dealing with the same type of solenoid valve fault. 

Based on these observations, it is inferred that a solenoid 

valve fault is present if the minimum distance falls within the 

range of α to β. 

3.4. Feature Extraction 

A method for estimating the location and degree of solenoid 

valve malfunction involves extracting the pressure drop 

magnitude ∆𝑃 upon valve opening. This feature is acquired 

from four sensors proximal to the valve (P3, P4, P6, and P7). 

∆𝑃𝑖 = 𝑃𝑖(𝑡𝑜 − 0.001) − 𝑃𝑖(𝑡𝑜)       (i=1,2,3,4) (10) 

Here,  𝑃𝑖(𝑡) represents the pressure at the position of the i-th 

solenoid valve at time t. Time 𝑡𝑜  corresponds to when the 

pressure drop transpires at one or more valves due to their 

opening.  

The feature is formulated based on the physical principle 

stating that a decrease in valve opening leads to a reduced 

opening area, diminished flow velocity at the moment of 

valve opening, and a smaller pressure drop. 

Figure 5 illustrates the instances of pressure data when a fault 

occurs at the valve 1 of the solenoid valve. As shown in the 

figure, the pressure drop reaches its peak at 100% valve 

opening and recedes as the valve opening diminishes. In 

contrast, the pressure drops of other valves - P4, P6, and P7 - 

remain unaffected by the faulty valve and maintain a 

relatively constant state. Consequently, the location of 

malfunctions can be determined. 

 

Figure 5 Pressure Drop Behavior with Solenoid Valve Fault 

at SV1 (P3), 0.010-0.012 sec 
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3.5. Valve Assessment Model 

Based on the extracted features, The problematic valve 

locations are identified, the pressure drops of the four valves 

are compared, and the valve with the lowest pressure drop 

compared to the normal condition is the problematic valve 

location. 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = argmax
𝑖

(∆𝑃𝑖,𝑁𝑜𝑟𝑚 − ∆𝑃𝑖) (i=1,2,3,4) (11) 

Here, ∆𝑃𝑖,𝑁𝑜𝑟𝑚 represents ∆𝑃𝑖 under normal conditions. 

Subsequently, the valve opening ratio for the fault location is 

estimated using polynomial regression.  

𝑉𝑎𝑙𝑣𝑒 𝑂𝑝𝑒𝑛 𝑅𝑎𝑡𝑖𝑜 =  ∑ 𝑎𝑖∆𝑃𝑖

𝑛

𝑖=0

 (12) 

The pressure drops at opening ratios of 0, 25, 50, 75, and 

100% are known from the training data, n=4 is selected, and 

the coefficients 𝑎𝑖 are calculated from these data. 

4. RESULTS AND DISCUSSION 

4.1. Results for Test data 

The top five competition entries are listed in Table 3. 

Table 3 Final Evaluation Result 

Rank Team Name Total Score 

#1 LB 100.00 % 

#2 vibrationsensor 99.94 % 

#3 SK 99.86 % 

#4 Team Tsubasa 99.05 % 

#5 KYU 97.26 % 

The test dataset comprises information for spacecraft #4, 

which is not included in the trainnig data. However, the 

proposed methodology can also provide accurate estimates of 

this spacecraft. 

Figure 6 shows the results of the δ calculations for the test 

data. These are categorized using threshold values β and α, 

according to the method outlined in Section 3.3. 

 

Figure 6 Minimum distance δ for test data (δ<0.01 plotted 

as δ=0.001 for convenience) 

Figure 7 illustrates the results of estimating the valve opening 

ratio based on the test data. This information can aid in 

constructing a regression equation based on the training data.

 

Figure 7 ΔP v.s. Valve Open Ratio for Solenoid Valve 

Fault at SV1 

4.2. Limitations 

Although the current study employs simulations with clean 

data, real-world data typically incorporate outliers and noise, 

necessitating preprocessing steps. Furthermore, in practical 

scenarios, multiple anomalies could occur simultaneously, 

calling for separate models to detect each distinct anomaly 

mode. Evaluating the model's diagnostic ability under 

varying valve opening and closing patterns will be crucial, 

considering that real-world operational conditions may differ 

from those in the training data. 

5. CONCLUSIONS 

This paper presents a winning solution for the The PHM 

Asia-Pacific 2023 Conference Data Challenge. The solution 

is based on the following concepts: 

- Data regime separation based on in-class data variance 

- Classification and anomaly detection based on similarity 

- Physics-informed Feature design 

The proposed architecture is designed to assess the health of 

a spacecraft propulsion system using pressure sensor data. 

Assurance of robust accuracy for unknown cases is 

accomplished by excluding data from regimes without inter-

individual effects. The model, by leveraging similarity with 

known data, achieves anomaly detection for unknown classes 

and classification for known classes simultaneously. In 

addition, the model uses pressure drop features, designed 

based on domain knowledge, to estimate the degree of valve 

fault. 
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