
Machine learning model for detecting hydrogen leakage from hydrogen 

pipeline using physical modeling 

Yuki Suzuki1, Jo Nakayama2, Tomoya Suzuki2, Tomoya Soma3, Yu-ichiro Izato4, Atsumi Miyake4 

1Graduate School of Environment and Information Sciences, Yokohama National University,79-5, Tokiwadai, Hodogaya-ku, 

Yokohama, Kanagawa, 240-8501, Japan 

suzuki-yuki-cs@ynu.jp 

2 Center for Creation of Symbiosis Society with Risk, Institute for Multidisciplinary Sciences, Yokohama National University, 

79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa, 240-8501, Japan 

nakayama-jo-sj@ynu.ac.jp 

suzuki-tomoya-sk@ynu.ac.jp 

3NEC, 7-2, Shiba 5-chome Minato-ku, Tokyo, 108-8001, Japan 

tomoya@arogopilot.com 

4 Faculty of Environment and Information Sciences, Yokohama National University,79-5, Tokiwadai, Hodogaya-ku, 

Yokohama, Kanagawa, 240-8501, Japan  

izato-yuichiro-tk@ynu.ac.jp 

miyake-atsumi-wp@ynu.ac.jp 

 
ABSTRACT 

Hydrogen pipelines (HPL) are one of the hydrogen 

transportation systems for realizing a hydrogen society. 

Hydrogen leakage from HPL is a challenge because hydrogen 

has a wide flammable range and low minimum ignition 

energy. Thus, hydrogen leakage from the HPL must be 

rapidly detected, and appropriate actions should be taken. 

Leakage detection is important for safe operation of HPL. 

The basic leakage detection method for HPL involves 

monitoring the pressure and flow rate values of the sensors. 

However, in some cases, it is difficult to distinguish between 

non-leakage and leakage conditions using this method. In this 

study, we focus on a leakage detection method using machine 

learning (ML) based on the relationship between pressure and 

flow rate data. There are two challenges in applying the ML-

based leak detection method to an HPL. First, there are 

insufficient operational data for ML during the process-

design stage. Secondly, it is difficult to obtain the pressure 

and flow rate behaviors during hydrogen leakage because 

leakage does not occur frequently. Consequently, this study 

employed an unsupervised ML method based on data 

simulated using a physical model of the HPL. First, a physical 

model of the HPL (HPL model) was constructed, and an ML 

model for leak detection was constructed based on the data 

simulated by the HPL model. The leak detection capability of 

the ML model was verified by comparing the anomaly scores 

of the non-leakage and leakage conditions. From the results, 

the ML model can distinguish between non-leakage and 

leakage behaviors and identify leakage points under certain 

conditions. This method can contribute to the optimization of 

the sensors required for leak detection during the process 

design stage.  

1. INTRODUCTION 

Hydrogen pipelines (HPL) have attracted significant 

attention as one of the hydrogen transportation methods. HPL 

can transport large amounts of hydrogen and therefore have 

low transportation costs (Faye, Szpunar, & Fduok, 2022). 

HPL have been used for industrial purposes in plants and are 

expected to supply hydrogen to households and public 

facilities in the future. This study targets HPL which transport 

hydrogen at low pressure and are designated to transport 

hydrogen in urban areas. 

One of the challenges for the social implementation of 

HPL is to ensure their safety (Nakayama, Suzuki, Owada, 

Shiota, Izato, Noguchi, & Miyake, 2022). Hydrogen leaks 

from HPL are a challenge because hydrogen has a wide 

flammable range and low minimum ignition energy. 

Therefore, if hydrogen leaks from HPL, the hydrogen may be 

ignited easily by very small energy, such as electrostatic 

spark discharge, which may lead to serious fire and/or 
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explosion accidents (Imamura, Hamada, Mogi, Wada, 

Horiguchi, Miyake, & Ogawa, 2008). HPL are expected to be 

laid in urban areas in the future, and there could be a 

significant impact on surrounding residents if fires and/or 

explosions occur. Thus, prevention and mitigation measures 

for hydrogen leakage are important for the safe operation of 

HPL. 

The detection of hydrogen leakage from an HPL is an 

important safety measure. This enables the early detection of 

leakage and prevents accidents. The basic leakage detection 

method applied in the oil, gas, and water industries involves 

monitoring the pressure and flow rate values of sensors, 

which can also be used for HPL. This method is 

straightforward but sensitive to the instrument and the 

dynamics of the pipelines (Zhonglin, Li, Shan, Jing, Hao & 

Tong, 2022). In the future, HPL are expected to supply 

hydrogen to multiple consumers. Hence, the hydrogen 

pressure and flow rate behaviors in the HPL may be unstable 

and change dynamically owing to fluctuations in the 

hydrogen demand of consumers. Hence, it is difficult to 

easily distinguish between non-leakage and leakage 

conditions using the conventional method when the pressure 

and flow rate behaviors under non-leakage conditions are 

similar to those under leakage conditions. 

 To address this challenge, we focused on a leak 

detection method using machine learning (ML). In recent 

years, considerable research has been conducted on leak 

detection methods using ML, some of which have been 

applied to oil pipelines (Idachaba, & Tomomewo, 2023), and 

fuel cell vehicles (Mingbin, Teng, Chenhui, Mingjia, Shui, 

David, & Xuefang, 2021). ML can discover hidden 

relationships among data that humans cannot discover. The 

ML method can manage the aforementioned challenges using 

the relationships established between sensors as monitoring 

indicators. There are two challenges to applying the ML 

method to HPL. The first is insufficient operational data for 

ML. The ML method requires large amounts of operational 

data. However, operational data have not been accumulated 

because HPL is still in the social implementation stage, and 

there are few demonstration cases. Secondly, it is difficult to 

obtain the pressure and flow rate behaviors during hydrogen 

leakage because leakage does not occur frequently. We 

approached these challenges in the following manner. For the 

former, we acquired operational data via simulation. The 

simulation was performed using a physical model of the 

hydrogen pipeline (HPL model). For the latter, an 

unsupervised ML method was employed. This method can 

learn using only non-leakage data and does not require 

leakage data. In other words, we employed an unsupervised 

ML method based on data simulated using the HPL model to 

detect hydrogen leakage from the HPL.  

This study aimed to construct an ML model for detecting 

hydrogen leakage from an HPL using physical modeling. 

First, an HPL model designed to supply hydrogen to multiple 

consumers was constructed, and an ML model for leak 

detection was developed based on the data simulated by the 

HPL model. The leak detection capability of the ML model 

was verified by comparing the anomaly scores of the non-

leakage and leakage conditions. In addition, the ability of the 

ML model to identify leakage points was verified because it 

was very important to know where the leakage points were to 

take appropriate action after the leak was detected. 

Consequently, we developed a fundamental technology for 

leak detection based on ML, which can be considered in the 

design stage of the HPL. 

2. METHODOLOGY 

2.1. Physical model of hydrogen pipeline (HPL model) 

2.1.1. Model construction 

The HPL model was defined as follows: A physical 

model represents the hydrogen transportation processes from 

the hydrogen production site to the hydrogen consumption 

site. The HPL model is based on Modelica, an equation-based, 

object-oriented modeling language that allows the acausal 

modeling of complex cyber-physical systems (The Modelica 

Association). Modelica was used to model the complex 

coupled mechanical, electrical, thermal, and control system 

phenomena. Modelica is widely applied for multi-physics 

and system-level modeling language for model-based design 

and analysis in the hydrogen infrastructure (Suzuki, Kawatsu, 

Shiota, Izato, Komori, Sato, Takai, Ninomiya, & Miyake, 

2021), and aerospace fields (Kawatsu, 2018). This modeling 

method has a low calculation load and can easily modify 

physical models. Thus, it can generate large amounts of 

dynamic data, such as pressure, flow, and temperature 

behavior. The Modelica-based modeling and simulations in 

this study were supported by the Modelica-based tool 

SimulationX (ESI ITI GmbH). The components provided in 

SimulationX were used for the model. SimulationX included 

the basic elements of pneumatics and hydrogen power, such 

as volume, pipelines, fuel cells, electrolyzers, and pressure 

sensors.  

First, an HPL model designed to supply hydrogen to one 

consumer was constructed using physical equations, such as 

the ideal gas equation and the first law of thermodynamics. 

The model was validated by comparing the pressure and flow 

rate profiles obtained from a demonstration experiment. The 

input parameters of the model were selected based on the 

demonstration. By comparing the simulation and 

experimental data, the pressure and flow rate were validated 

because the experimental and model simulation values 

exhibited similar behavior. The HPL is a relatively simple 

system, and it was determined that it is feasible to extend the 

HPL model with validated physical equations and construct 

the HPL model as shown in Figure 1. This model was 
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designed to supply hydrogen to multiple consumers and was 

used to acquire the operational data for ML. 

2.1.2. Data acquisition 

Pressure and flow rate data were generated through 

simulations using the HPL model. Table 1 shows the main 

input parameters of the HPL model. The simulations were 

performed under the conditions listed in Table 1. A Monte 

Carlo simulation was used to obtain various simulation data 

because it requires operational data under many operating 

conditions. It can be used to obtain simulation data for 

various temperatures and consumer power demands. The 

fluctuation parameters are listed in Table 2. We performed 50 

calculations for a simulation time of 1000 s. The simulation 

data were used as training data to construct the ML model. 

Figure 2 shows a representative example of the pressure and 

flow rate data. 

2.2. ML model construction 

  The ML model was defined as the relationship 

established between sensors under non-leakage conditions. 

The ML model can predict the values of the sensors at a 

certain time. When the residual between the predicted value 

from the ML model and the observed value for a sensor 

exceeds the set threshold value, it can be considered a leakage 

condition. An ML model was constructed using Invariant 

analysis technology (NEC). Invariant analysis technology 

can extract and create invariant relationships between two 

sensors that represent the characteristics of facilities or 

systems based on massive quantities of sensor data. This 

technology is widely applied to many systems such as 

accelerator systems (Soma, Ishii, Fukuta, & Shiga, 2018). 

2.3. Verification 

The leakage detection capability of the ML model was 

verified to ensure that the ML model can distinguish between 

non-leakage and leakage conditions in certain leakage 

scenarios. The verification method is as follows. 

 

 

Table 1. Main input parameters of the HPL model 

 

Table 2. Parameters given the fluctuations 

 

1. Generating test data 

The test data were acquired via simulations using the 

HPL model. Both non-leakage and leakage condition data 

were generated. The simulation conditions of the non-leakage 

Parameters Value 

Power 

demand 

fluctuation of 

consumer 

Time 

interval 

Large 

fluctuation 

pattern 

Small 

fluctuation 

pattern 

1 s -0.01 - +0.01 % 

10 s -0.1 - +0.1 % -1.0 - +1.0 % 

60 s -0.5 - +0.5 % -5.0 - +5.0 % 

Temperature 

fluctuation 
-0.2 - + 0.2 K 

Parameters Value 

Hydrogen supply pressure 0.7 - 1.0 MPa 

Diameter of HPL 7.9 mm 

Length of HPL 
1,2,3 360 m 

4,5,6 100 m 

Rated power of fuel cell 

Small 

consumer 
0.7 kW 

Medium 

consumer 
4.0 kW 

Large 

consumer 
20 kW 

Initial Atmospheric 

temperature 
283 - 303 K 

Pressure / Flow rate sensor 8 / 8 

Figure 1. HPL model illustrated using SimulationX 
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condition data were similar to those of the training data, and 

there were four scenarios with different hydrogen supply 

pressures. 

The leakage phenomenon was represented by the flow 

rate regulation using orifices. For the leakage condition data, 

five leak diameters (0.2, 0.4, 0.6, 0.8, 1.0 mm), three leak 

points (HPL (1), (2), (3)) in Figure 1, and four different 

hydrogen supply pressures (0.7, 0.8, 0.9, 1.0 MPa) were 

assumed. Thus, 60 scenarios were considered for the leakage 

conditions. We performed five calculations for every 64 cases 

(4 (non-leakage) + 60 (leakage) = 64). In other words, 320 

data were generated as test data. 

2. Calculating anomaly score 

Anomaly score is based on the differences between the 

values predicted by the ML model and the test data. A higher 

anomaly score indicates a deviated condition from the non-

leakage conditions and is likely to be under leakage 

conditions. The steps for calculating the anomaly score are as 

follows. (1) Calculate the residual between the predicted 

value from the ML model and the test data. (2) If the residual 

exceeds the set threshold, it was determined that the 

relationship has collapsed. (3) The fitness score of the 

collapsed relationship is added to the anomaly score. The 

fitness score indicates the predictive accuracy of the 

relational equation; the closer it is to 1, the higher the 

accuracy is. These steps are performed for all relationships. 

3. Comparing anomaly score under non-leakage and 

leakage conditions 

The anomaly scores under non-leakage and leakage 

conditions were compared. If the distinction between them 

could be confirmed, it was determined that the ML model 

could distinguish between non-leakage and leakage 

conditions. 

3. RESULTS AND DISCUSSION 

3.1. ML model 

Table 3 presents examples of the relationships 

established between the sensors. The equation in Table 3 can 

predict the pressure of the fuel cell (i) from the pressure of 

the HPL (1) and the equation. In total, 62 relationships were 

constructed, and we collectively named them ML models. All 

these relationships were used for leak detection.  

3.2. Result of anomaly score 

Figure 3 shows a representative example of an anomaly 

score. The anomaly score for the non-leakage condition data 

(blue line) was always zero. This implies that the residual 

between the predicted value from the ML model and the test 

data was small, and the deviation from the non-leakage 

conditions was small. However, the anomaly score for some 

leakage condition data (red dotted line) increased when 

leakage occurred (200 s). This means that the residual 

between the predicted value from the ML model and the test 

data was large, and the deviation from the non-leakage 

condition was large.  There was a distinction between them; 

therefore, it was confirmed that the ML model could 

distinguish between non-leakage and leakage under certain 

Input parameter Predicted parameter Equation Fitness score 

Pressure of  

HPL (1) 

Pressure of  

fuel cell(i) 
y(t) =9.34×10-1 x(t)+6.53×10-2 x(t-1) +1.39×10-4 0.9997 

Pressure of 

HPL (2) 

Flow rate of 

 HPL (3) 
y(t) = 9.99 ×10-1 y(t-1)-265 x(t-2) +265 x(t-3) -5.06×10-2 0.8163 
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Figure 2. The simulation data acquired by the HPL model (left figure: pressure data, right figure: flow rate data) 

Table 3. Relationships established between sensors 
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conditions. However, the anomaly score for some leakage 

condition data did not increase when the leakage occurred. 

This was seen in the case of small leakage diameters, 

especially when the leakage diameter was 0.2 mm, which 

failed for all data. Tables 4, 5, and 6 present the verification 

results for the leakage condition data. The results were 

calculated as a percentage of the total number of test data 

points that were successfully judged. 100% indicated that the 

judgment was successful for all five sets of test data. It was 

thought that one of the causes of failure was that the scale of 

the leakage was too small to be detected using the ML model. 

Our method determines leakage based on the degree of 

deviation from non-leakage conditions. Thus, the deviation 

may be too small to be detected when the scale of the leakage 

is small. In some failed cases, the residual increased when 

leakage occurred, but was not sufficient to exceed the set 

threshold. If the thresholds were set lower, these cases would 

be detectable; however, this may increase the number of false 

positives. 

As shown in Tables 4-6, as the number of consumers at 

the supply destination increases, it becomes more difficult to 

deal with a small leak diameter. This is because the larger the 

number of consumers at the supply destination, the greater 

the volume of hydrogen supplied, and the greater the pressure 

and flow rate fluctuations under non-leakage conditions. This 

makes it difficult to distinguish the differences in the pressure 

and flow rate fluctuations under leakage conditions.  

 

Table 4. Result of identification (leak points: HPL (1)) 

Leak diameter 

[mm] 

Hydrogen supply pressure [MPa] 

0.7 0.8 0.9 1.0 

0.2 0 % 0 % 0 % 0 % 

0.4, 0.6,  

0.8, 1.0 
100 % 100 % 100 % 100 % 

 

Table 5. Result of identification (leak points: HPL (2)) 

Leak diameter 

[mm] 

Hydrogen supply pressure [MPa] 

0.7 0.8 0.9 1.0 

0.2, 0.4 0 % 0 % 0 % 0 % 

0.6 0 % 100 % 100 % 100 % 

0.8, 1.0 100 % 100 % 100 % 100 % 

 

Table 6. Result of identification (leak points: HPL (3)) 

Leak diameter 

[mm] 

Hydrogen supply pressure [MPa] 

0.7 0.8 0.9 1.0 

0.2, 0.4, 0.6 0 % 0 % 0 % 0 % 

0.8 0 % 80 % 80 % 100 % 

1.0 100 % 100 % 100 % 100 % 

 

3.3. Identification of leakage points 

Locating leakage plays one of the most important roles 

in leakage detection. When the leakage point was HPL (1), 

the relationship between the pressure of HPL (1) and the 

pressure of the fuel cell (i) contributed to the leak 

determination in all test data. The relationship between the 

pressure of HPL (2) and the pressure of the fuel cell (i), the 

pressure of HPL (1), and the pressure of HPL (2) also 

contributed to the leak determination. Because many sensors 

are located near the leak point, the leak points can be 

identified based on the collapsed relationships. Similarly, 

when the leakage point was HPL (2), the relationship 

between the pressure of HPL (4) and the pressure of HPL (2), 

the pressure of HPL (1) and the pressure of HPL (2), and the 

pressure of HPL (2) and the pressure of fuel cell (i) 

contributed to leak determination in all test data. When the 

leakage point was HPL (3), the relationships between the 

pressure of the fuel cell (ⅲ) and the pressure of HPL (3), and 

the pressure of the tank and the pressure of the fuel cell (i) 

contributed to leak determination. Similarly, it was also 

possible to identify the leak point based on the collapsed 

relationships when the leakage point was HPL (2) and (3).  

3.4. Advantages and challenges of the ML model 

As mentioned previously, the ML model can distinguish 

between non-leakage and leakage under certain conditions. 

In addition, it can identify leakage points based on collapsed 

relationships. The ability to identify leakage points is an 

advantage of ML models. It is also possible to determine an 

optimal sensor solution for leak detection during the process 

design stage. Leakage can be detected not only using the 

values of the sensors near the leakage points but also using 

Figure 3. Result of anomaly score 
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the values of the sensors far from the leakage points.  

However, in some cases, the ML model does not function. 

Thus, it is necessary to consider methods to improve the 

performance of the ML model. For example, consideration 

could be given to improving the performance when the 

number and variation of training data are increased. 

Additionally, the amount of validation data must be increased. 

Moreover, it is necessary to confirm in demonstration 

projects that the proposed method works because this study 

worked mainly by simulation. 

4. CONCLUSION 

In this study, we constructed an ML model to detect 

hydrogen leakage from an HPL. First, an HPL model (written 

in the modeling language Modelica) designed to supply 

hydrogen to multiple consumers was constructed. Physical 

modeling allows the generation of a large amount of various 

data and the flexibility to respond to future design changes. 

The ML model was then constructed based on the data 

simulated by the HPL model using unsupervised learning 

algorithms. The leak detection capability of the ML model 

was verified by comparing the anomaly scores of the non-

leakage and leakage conditions. From the verification results, 

the ML model can distinguish between leakage and non-

leakage conditions under certain conditions. In addition, the 

ML model can identify leakage points based on collapsed 

relationships. However, the ML model cannot work well in 

some cases and needs to be improved to deal with more cases.  
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