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ABSTRACT 

The diagnosis of complex systems benefits greatly from a 

differential, multistep approach that narrows down the list of 

possible conditions or failures that share the same 

observable effects to a single root cause. We provide a 

suitable and practically applicable methodology for this. In 

extension to existing work, it covers all types of diagnostic 

actions, i.e., the observation of system properties, active 

testing and system interventions like providing a dedicated 

diagnostic input or forcing the system into discriminating 

states, but also the replacement of components. Combining 

all these possible steps into one probabilistic and causal 

reasoning framework, we I) stepwise generate the diagnostic 

model systematically to correctly cover the interplay of 

observations and diagnostic interventions, and II) provide 

decision support based on counterfactuals for the selection 

of the next diagnostic step, countering the vast number of 

possible actions that arise in machine diagnostic processes. 

We developed and successfully tried our methodology for 

diagnosing cyber-physical systems in the high-tech industry, 

but we found that it supports more processes, such as 

computing intervention actions for autonomous robots. 

1. INTRODUCTION 

Machine Diagnosis, understood as the identification of the 

nature and cause of a certain and unwanted phenomenon 

within a technical system by means of at least semi-

automated analytics, is key in after-sales processes of many 

industries. It allows systems to partially self-diagnose, thus 

offering users of production equipment reduced down-times 

either by enabling them to fix issues themselves or by 

ensuring that service personnel come in with the right parts 

for potential hardware failures. Further, it tunes maintenance 

towards minimal costs and counters the shortage of 

experienced service engineers by raising their efficiency and 

by enabling less experienced personnel to perform the tasks. 

One crucial design decision in the realization of a system for 

machine diagnosis is which information it processes. Failure 

effects and measurements of key performance indicators are 

typical candidates that can be observed and processed, but 

experienced service engineers consider more: they either use 

active testing, i.e., they set system states or provide the 

system with tailored inputs to discriminate between root 

causes or undertake costly investigative part replacements. 

In the work presented here, we extend previous work for 

machine diagnosis (Barbini 2020) towards this level of 

analytical prowess and introduce automated reasoning for 

differential diagnosis with active testing and other inter-

ventions within a unified framework. For this, we introduce 

our method of diagnosis with causal Bayesian Networks in 

Section 2 and provide an example in Section 3 that shows 

that interventions are necessary in machine diagnosis and 

illustrates our solution for handling them. In Section 4, we 

extend our methodology with counterfactual reasoning to 

select the best diagnostic action. Section 5 illustrates two of 

our use cases, and Section 6 concludes with future topics. 

2. DIFFERENTIAL MACHINE DIAGNOSIS 

2.1. Diagnosis using Causal Belief Networks 

Bayesian Belief Networks, also known as Bayes Nets (BN), 

are probabilistic graphical models that were shown to 

deliver excellent diagnostic capabilities (Heckerman, 1995, 

among other works). Introduced by Pearl (1986), they offer 

probabilistic reasoning for taking an observable event and 

inferring the likelihood that any one of several possible 

known causes was the contributing factor. In this, they form 

an efficient solution to compute the marginal distribution of 

the known causes, i.e., of a hypothesis H, given 

observations or evidence e, following Bayes’ Theorem:  

𝑃(𝐻|𝑒) =
𝑃(𝑒|𝐻) ∗ 𝑃(𝐻)

𝑃(𝑒)
 

with P(H), P(e) the probability of observing H and e (the 

priors or marginal distributions), and P(H|e), P(e|H) the 

conditional probability of H and e, given the other one. 
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Defined as directed acyclic graphs (DAGs) whose nodes 

represent variables in the Bayesian sense and whose edges 

represent conditional dependencies, BNs encode the joint 

probability distribution over all their variables. Their 

advantage for the purpose of diagnosis stems in part from 

the versatility that those variables may be observable, latent, 

and even unknown parameters or hypotheses, and that, with 

the joint probability distribution, all arbitrary combinations 

of variables may be considered. Moreover, BNs always 

consider all causes that are possible given the observations 

but rank them according to their likelihood that depends on 

both the observations, i.e., the provided evidence, and the a 

priori probabilities (the priors). 

Seeing that they are among the few inference techniques 

that combine knowledge- and data-driven modeling (Jensen 

& Nielsen, 2007), there are many options to build or 

generate BNs.  

Our own approach for the construction of BNs for the 

diagnosis of complex systems is based on modeling the 

knowledge on the system decomposition, deployment, and 

functional behavior using a domain specific language and 

the subsequent use of generative techniques to compose the 

needed BN from pre-build network fragments and rule-

based elements such that it conforms to that knowledge.  

Introduced by Borth & von Hasseln (2002), we detailed and 

extended this approach in (Barbini & Borth, 2019) and 

(Barbini et al., 2020), but, so far, limited ourselves to BNs 

for diagnostic processes that only use a set of simultaneous 

observations or a sequence of observations – but not a 

mixed sequence of observations and interventions.  

In essence, we (and others, compare, e.g., work by Ricks & 

Mengshoel, 2009) generated diagnostic systems that use the 

full power of Bayesian Belief Networks which mirror a 

system as it is, but did not utilize the diagnostic prowess of 

interventions to the system. A major reason for this 

restriction was that interventions alter the system’s causality 

– and neither modelling techniques nor inference calculi 

were ready to handle this until quite recently.  

This changed with Pearl’s do(x) operator (2009) that 

represents interventions and allows to correctly predict 

effects of such deliberate actions in causal networks. do(x) 

operator interventions have a different meaning and 

diagnostic power than statistical associations (Pearl & Mac-

kenzie, 2018): P(Y|x) > P(Y) simply states that observing x 

raises the probability of Y, which might have other reasons 

including a common cause, while P(Y|do(x)) describes the 

situation after performing the action x that affects Y and 

eliminates the effects of other confounding factors. Within 

diagnosis, this translates, e.g., to the difference between 

observing the availability of power at a connector – with the 

conclusion that the functional chain to provide that power is 

intact – and experimentally providing power at that point, 

invalidating all assumptions about that chain while offering 

deductions from the effects observed due to the intervention. 

2.2. Differential Causal Reasoning with Bayes Nets 

Within the probabilistic graphical model, the distinction of 

observing x and do(x) is paramount, as the first provides 

evidence for the variable x, i.e., setting the probability of the 

observed state to 1, leaving the rest of the network as it was, 

while the second also changes the network structure to 

reflect the new causal flow. A differential diagnosis using a 

mixed sequence of observations and interventions therefore 

requires a new technique of stepwise inference and network 

augmentation. Figure 1 depicts our methodology for this. 

 

As the graph shows, the diagnostic model is generated from 

the system design, with augmentations to the diagnostic 

model following subsequently for conducted actions that 

change the diagnosis and, in the case of interventions, the 

system (Section 3). The observations from the system itself 

allow us to compute the differential diagnosis in each step. 

Using this process and given the encoded expert knowledge, 

we generate diagnostic models that I) accurately represent a 

sequence of diagnostic tests of all kinds, i.e., the observation 

of additional properties, the setting of a different input, 

system interventions, and the replacement of components, 

and II) correctly carry the information between steps. 

The resulting differential diagnosis covers single fault as 

well as multi-fault scenarios. Intermittent faults, however, 

cannot be handled directly in this way (or any comparable 

approach), as the absence of a fault effect observation 

potentially leads to the diagnostic network ruling out the 

respective root-cause. 

            

     

                

                                            

                   

                      

       

     

      

         

            

             

       

                      

             

              

       

       

      
         

        

Figure 1. Differential Machine Diagnosis 

Figure 2. Schematic representation of an all-in-one printer 
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3. INTERVENTIONS 

We use an idealized version of a printer as an example to 

illustrate our approach to handle interventions in differential 

diagnosis. Figure 2 shows a schema of the idealized printer.  

Based on a given Command, either print or copy, the printer 

should create a Bitmap and produce a printed sheet with the 

Inkjetter. For the Command copy, the printer needs only the 

Scanner working to produce a Bitmap. Similarly, for the 

Command print, it needs only a working Image Processor to 

produce a Bitmap. The BN to diagnose the idealized printer 

is shown in Figure 3.1 Each system component is modelled 

with inputs, outputs, and health node. The system is created 

by considering the outputs of a component as the inputs of 

the following component. For details on how to generate 

this BN, we refer to (Barbini et al., 2020).  

3.1. System and component health 

In the BN figures below, nodes with a green identifier in the 

upper right corner represent the hidden health variable of 

components. In this example, we assume that the Command 

never fails, so it does not have a health node. The Scanner is 

broken with prior probability 5%, the Image Processor with 

1% and the Inkjetter with 10% respectively. The other nodes 

in the BN are not hidden, i.e., are nodes for which the state 

can be measured.  

For our diagnostic task, we use the BN to infer the 

probability distribution of the health nodes, given evidence 

in the other nodes. An example of how to perform a 

diagnosis with the BN is shown in Figure 3. We suppose 

that the Command is set to copy, but we do not obtain a 

Printed Sheet. The diagnosis, as the inferred probabilities on 

the health nodes, is very uncertain and the goal of our 

differential diagnosis is to perform diagnostic tests to reduce 

such uncertainty.  

 

Figure 3. BN of all-in-one printer. Copying fails. 

3.2. Diagnostics tests 

There are four different types of diagnostic tests. Each type 

comes with specific modelling and BN interactions. 

Type I: observe additional properties 

The first type of diagnostic test, widely covered by existing 

work on BN for diagnosis, consists of adding additional 

 
1 We modelled all the BNs with the Bayes Server software [Bayes Server]. 

evidence to one of the observable nodes. This is shown in 

Figure 4, for the observation of an existing Bitmap. This test 

is executed by probing the printer to collect the additional 

observation on the presence of the Bitmap.  

 
Figure 4. Type I: Observe additional properties 

 

Type II: set a different input 

A second type of diagnostic test consists of setting a 

different input to the system. This is a fundamentally 

different type of test than the previous one. Firstly, we are 

not only observing, but we are intervening in the system, by 

doing the action of changing an input. Secondly, the result 

of the action could potentially lead to a different observation 

than in the absence of said action, making it counterfactual.  

Our approach is to augment the BN when doing a test 

comprising an intervention. This augmentation procedure 

has two steps. Firstly, we duplicate all the nodes in the BN 

except for the health nodes and the input nodes which are 

not set to a different value (with input nodes referring to BN 

nodes that have no parents and are not of type health). 

Secondly, we connect the duplicated nodes as children of 

the original health nodes. This approach – and not, as is 

sometimes assumed, just updating the priors using the result 

of the inference – delivers the correct inference model, as 

Balke & Pearl showed (1994). Notice that with this 

augmentation procedure there is no need to specify new 

conditional probability tables, as they are the same as in the 

original, not augmented BN. 

Figure 5 shows an example of this augmentation procedure. 

The starting point is the diagnosis BN in Figure 3. The 

duplicated nodes have a 1 at the end of their names, e.g., 

Command1. We now observe a Printed Sheet1 for the 

printer input Command1 print. As the augmented BN’s 

reasoning also includes the evidence coming from the 

situation when copying failed, it infers that the only possible 

diagnostic solution is that the Scanner is broken and the 

Image Processor and InkJetter are OK.     

 

Figure 5. Type II: set a different input 
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Type III: replace a component 

The third type of diagnostic test is the replacement of a 

component. This is also an active type of test, and thus of a 

similar nature as the previous one. When doing differential 

diagnosis with this type of test we also need to augment the 

BN, but – differently than with Type II tests – we duplicate 

its health node when we replace a component.  

Figure 6 shows this procedure on the idealized printer for 

the case that we replace the InkJetter after copying fails. For 

the replaced component we assumed that InkJetter1 is 

known to be functioning (this is not necessary and might be 

relaxed). The input node Command is not set to a different 

value when the printer has a new Inkjetter, and is thus not 

duplicated, making it a common parent for both the Bitmap 

and Bitmap1 node. 

 

Figure 6. Type III: replace a component 

 

The observation related to the action of replacing the 

InkJetter is that there is still not a PrintedSeet1. The BN 

infers that a broken Scanner explains the situation, allowing 

even a switch back to the original InkJetter, as the diagnosis 

established that the failure had to progress via the Bitmap, a 

statement that could not have derived from another probe. 

Type IV: intervene within the system 

The fourth type of test consists of forcing some of the 

physical quantities to a given value. In practical situations 

this corresponds to performing an action in the system, like 

connecting an external power supply to a part, and then 

observing the results in other parts, for example whether 

these are now correctly functioning. This test type also 

entails an intervention on the system and modeling it 

requires both an augmentation of the BN and the do(x) 

operator introduced above.  

Figure 7 shows an example of type IV testing: After 

copying fails, we try to print, which is a Type II test, but 

then we still do not get a Printed Sheet1. At this point, we 

intervene in the system and manually provide a Bitmap2 to 

the InkJetter. The light gray arrows pointing into Bitmap2 

node indicate the obstruction of information flow. 

The BN is consequently augmented with the duplication 

procedure described above, but in this type of test, we insert 

evidence with the do(x) operator on the duplicated node on 

which we force its physical quantity to a given value.  In the 

case of Figure 7, this is the Bitmap2 node, and the use of 

do(x) to set the evidence is shown with a red check mark.  

 

Figure 7. Type IV: intervene within the system 

 

In our example, we finally observe a Printed Sheet2 after 

providing Bitmap2. The augmented BN infers that the only 

possible solution to the diagnostic problem is that both the 

Scanner and the Image Processor are broken and the 

InkJetter is OK.2  

4. DECISION SUPPORT 

A major part of our system for machine diagnosis is to 

recommend the next best action to service engineers, as this 

increases their efficiency and reduces system down-time. To 

do so, we assess the value of possible diagnostics tests, i.e., 

we determine how much we would learn from them using 

counter factual ‘what-if’ reasoning. A test can be of any of 

the types outlined in the previous section. The result of each 

“what-if” scenario is the information gain or equivalently 

the reduction of uncertainty, for which we use an entropy 

measure (Oladyshkin & Nowak, 2019). 

Ideally, we would consider all possible tests sequences and 

then pick the one that is expected to lead to the diagnostic 

solution with minimal efforts. However, considering that for 

large systems there are hundreds of possible tests at any 

point, this approach seems infeasible. Instead, encouraged 

by de Kleer and others (1992) stating that “one step 

lookahead is pretty good”, we take the myopic approach in 

which we look only at the currently available tests, and pick 

the test based on the expected entropy within the BN after 

doing that single test.  

 
2 Without the do(x) operator, this evidence on Printed Sheet2 could not be 
set. It would have a null probability of finding as we tried both printing and 

copying and both failed. The do(x) operator deletes the dependence of 

Bitmap2 on its parent nodes and as a result one can have a Bitmap2 even if 
both the Scanner and the Image Processor are broken. 
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Intuitively, the entropy over the component health states is a 

measure of the uncertainty we have about the health of these 

components. The diagnostic process is then doing tests to 

reduce the entropy as much as possible.  

If we denote the set of health nodes in the Bayesian network 

with 𝛺, conditional entropy in model 𝑀 with 𝐻𝑀(∙ | ∙), and 

𝑇𝑖 = (𝐴𝑖, 𝑂𝑖) a possible test that comprises of an action 𝐴𝑖 

and an observation 𝑂𝑖 , we calculate the recommended test 

𝑇∗ as 

𝑇∗ =  𝐚𝐫𝐠𝐦𝐚𝐱(
𝑇𝑖

𝐻𝑀(𝛺) − 𝐻𝑀←𝐴𝑖
( 𝛺|𝑂𝑖))    (1) 

where M is the model representing the current situation and 

𝑀 ← 𝐴𝑖 the hypothetical situation if we would perform 

action 𝐴𝑖 on model 𝑀 as described in section 3. Notice that 

in the same 𝑇𝑖  the action and the observation can be 

performed in different system’s components.  

Calculating 𝑇∗ thus requires generating networks for every 

action 𝐴𝑖. 

Once the recommended test is executed, we generate the 

corresponding network, add the evidence that reflects the 

outcome of the test, and calculate the posterior probabilities 

of the components’ health, thereby presenting the new 

failure hypotheses. This procedure is repeated until a 

solution to the diagnostic problem is found. 

Equation (1) does not consider the costs such as time spent 

and monetary replacement costs of various tests but of 

course these must be incorporated. Intuitively, a test that 

reduces uncertainty the most per dollar spent is the most 

valuable. Assuming a linear relation between the uncertainty 

reduction and cost, Eq. (1) then becomes 

𝑇∗ =  𝐚𝐫𝐠𝐦𝐚𝐱
𝑇𝑖

(
𝐻𝑀(𝛺)−𝐻𝑀←𝐴𝑖

(𝛺|𝑂𝑖)

𝐶(𝐴𝑖)+𝐶(𝑂𝑖)
)    (2) 

where 𝐶(𝐴𝑖) is the cost of doing action 𝐴𝑖 and 𝐶(𝑂𝑖) is the 

cost of observation 𝑂𝑖 . 

 

Figure 8. Prototype Diagnosis Tool with Decision Support 

 

5. USE CASES 

We applied the described methodology to two use cases, 

targeting support service engineers in one, and in the other 

autonomous decision making in surveillance robots.  

Production Printing 

Canon Production Printing, part of Canon Inc., designs and 

manufactures large professional printers. In the professional 

markets, like book on demand printing, minimal downtime 

is key to reduce total costs of ownership, but the avoidance 

of unscheduled downtimes is of equal importance. 

Especially for the first of these objectives, service engineers 

must be able to quickly diagnose misbehaving printers – a 

task that is complicated by the high system complexity that 

resulted from increasing demands on print quality as well as 

on production throughput. To assist these service engineers, 

we pioneered and established our methodology on a 

subsystem of about 50 potentially failing components and 

qualitatively assessed the recommendations given by our 

diagnostic system in different scenarios. 

The results exceeded expectations and by now led to Canon 

Production Printing incorporating the method in their 

service tooling, for which a prototype is shown in Figure 8. 

Factors in this success were stringent diagnostic conclusions 

that stem from our diagnostic basis in system modelling, 

and the push towards the most likely root cause that follows 

from the a priori data on component failure likelihoods but 

also from the system’s ability to propose novel diagnostic 

strategies that minimize efforts. We saw our model ruling 

out many potential faults with quick active tests that were 

seemingly unrelated to the current issue, but surprisingly 

greatly reduced the uncertainty on the system’s state.  

Adaptive Behavior in Robot Dogs 

The ability to compute which intervention would best 

enhance an active investigation also allowed us to improve 

adaptive behaviors of autonomous robot dogs (TNO, 2022). 

One of the use cases for these robot dogs is the inspection of 

industrial sites, e.g., to check for leaking pipes. Equipped 

with gas sensors and both visual and acoustic cameras, these 

robots move in noisy environments that are likely affected 

by wind, smog, and fog. It is thus not sensible to simply 

follow prescribed procedures for the inspections: the robots 

must instead actively seek to improve their performance, 

especially their detection and perception capabilities. We 

reached such adaptive behavior with an online diagnosis 

system that reasons about causes for low performance and 

then computes the most promising intervention, like moving 

in the line of the wind or out of a zone with high noise.  

Even though the system descriptions focus on performance 

next to the functionality for the robots, and the possible 

interventions included behaviors, we followed the same 

methodology in both studies. This gives us confidence that 

our approach is applicable to many scenarios and domains. 
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6. CONCLUSION AND FUTURE WORK 

Being able to deal with intervening diagnostic tests is 

crucial for a real-world diagnostic support tool. Based on 

the long-standing theory of counter factual reasoning, we 

can now deal with these interventions in practice. 

Preliminary results on small use cases indicate this method 

indeed enables a structured way of deciding among different 

possible actions and warrants scaling up to large systems. 

Nevertheless, the decision support as outlined in section 4 

can be refined in several ways. 

Firstly, Eq. (1) inspired by existing service manual 

procedures, assumes a fixed relation between an action 𝐴𝑖 

and observation 𝑂𝑖 . In theory, however, we could do any 

action 𝐴𝑖 and the observe some 𝑂𝑗, leading to  

𝑇∗ =  𝐚𝐫𝐠𝐦𝐚𝐱
𝑇𝑖𝑗

(
𝐻𝑀(𝛺)−𝐻𝑀←𝐴𝑖

(𝛺|𝑂𝑗)

𝐶(𝐴𝑖)+𝐶(𝑂𝑗)
)           (3) 

However, many of the pairs (𝐴𝑖 , 𝑂𝑗) will not make sense in 

a practical situation so the computational complexity might 

not be worth the additional information gain. 

Secondly, the method assumes that costs are independent 

while typically they depend on the system state 𝑀 . A 

canonical example is that many actions and observations 

might be expensive because they require opening the 

system, but once opened, all of these become cheap. The 

greedy one step look ahead might therefore not be optimal. 

The most challenging part here is to find the sweet spot 

between planning optimality and ease of cost structure 

specification. 

Finally, we might relax the linear dependency between 

entropy reduction and cost and allow for a more finetuned 

relation, leading to a nominator 𝑓(𝐻𝑀(𝛺) − 𝐻𝑀←𝐴𝑖
(𝛺|𝑂𝑖))) 

in Eq. (2) where 𝑓 is to be optimized. 

All these extensions are currently being researched or 

planned as future work. 
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