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ABSTRACT

Traditional statistical models, e.g., Weibull distributions, are
popular solutions for failure modeling and degradation anal-
ysis in a variety of industries. To estimate the parameters
of these statistical models, maximum likelihood estimation
(MLE) is often engaged through various optimization algo-
rithms. However, when dealing with highly reliable or new
equipment, it is challenging to fit limited or unbalanced data
to obtain an accurate model. In this paper, we propose a deep
learning (DL)-based model for estimating the Weibull param-
eters with both censoring and truncation problems. Instead of
using the conventional matrices such as concordance index,
we propose a novel validation framework to examine the pre-
diction accuracy of different models. We examine the perfor-
mance of the proposed approach on real-world power trans-
former data, and the results show that our approach can im-
prove prediction accuracy and is less susceptible to the trun-
cation problem. Our results also suggest that deep learning
techniques can help enhance traditional statistical modeling
for reliability analysis.

1. INTRODUCTION

Power transformers are critical to the reliable and stable op-
eration of power grids, delivering electricity to homes, busi-
nesses, industries, and critical utilities. However, power
transformers are subject to various types of failures, which
can lead to power outages, equipment damage, and even
safety hazards. In order to reduce the risk of failures and
improve transformer maintenance strategies, it is essential to
understand the probability distribution of the time to failure.
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Survival analysis is a statistical method that studies the prob-
ability of event occurrence over time. The two-parameter
Weibull distribution is a popular statistical model used in
many engineering applications, including power industries
(Hong, Meeker, & McCalley, 2009; Chmura, Morshuis, Gul-
ski, Smit, & Janssen, 2011), to describe the distribution of
failure probability. However, traditional methods may not be
able to capture complex relationships between additional co-
variates and the probability of failures, while recent advances
in deep learning (DL) offer new solutions for modeling with
high-dimensional inputs and predicting survival outcomes.

While DL models have shown promising results in various
survival analysis applications (Katzman et al., 2018), the
existing DL-based survival models that assume the Weibull
models as underlying distributions have only considered the
censoring problem (Bennis, Mouysset, & Serrurier, 2020,
2021; Nagpal, Li, & Dubrawski, 2021), which refers to in-
complete observations of the time to failure. In the mean-
while, the truncation problem, which exists when there are
samples with events happening before the start of the stud-
ies, e.g., transformers failed before the actual observation of
failures, has not been fully addressed by DL-based methods.
However, both problems have been examined and addressed
by formulating the likelihood function and estimating two-
parameter Weibull models with maximum likelihood estima-
tion (MLE) (Hong et al., 2009).

In this paper, we propose a DL-based model to consider
both censoring and truncation problems and estimate the two-
parameter Weibull distribution for power transformers. Our
model aims to capture the complex relationships between the
predictors and the response variable to improve the accu-
racy of failure prediction. We evaluate the performance of
our model on a real-world dataset of power transformers and
compare it with traditional estimation methods. Our results
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demonstrate the effectiveness of our proposed model in pre-
dicting survival probability and the number of failures.

The remainder of the paper is organized as follows. Section
2 introduced the proposed DL-based model and the valida-
tion framework to evaluate the prediction performance. The
experimental results are presented in Section 3, while the con-
clusion is provided in Section 4.

2. METHODOLOGY

The two-parameter Weibull distribution, which is specified
by a shape parameter β and a scale parameter η, is a com-
monly used statistical model in failure analysis. Its probabil-
ity density function (p.d.f.) f(t) and cumulative distribution
function (c.d.f.) F (t) are defined as (Weibull, 1951),

f(t) =
β

η
(
t

η
)β−1e−( tη )

β

, (1)

F (t) = 1− e−( tη )
β

, (2)

respectively, where t is the survival time. The Weibull dis-
tribution is favored for its ability to model both increasing
and decreasing hazard rates over time by simply varying β,
where the hazard rate is the probability of an event occurring
in a small time interval, given that the individual has survived
up to that point, and it is defined as f(t)/(1− F (t)).

In recent years, DL models have gained popularity in sur-
vival analysis due to their ability to capture complex rela-
tionships between covariates and the survival outcome that
may be missed by traditional statistical models. In this paper,
we propose a DL-based model named DeepWeibull, which
models the reliability of power transformers with the two-
parameter Weibull distribution as the underlying distribution,
while taking into account the covariates as inputs. By using
DeepWeibull, we aim to improve the accuracy of the predic-
tions for transformer reliability, especially for complex data
with a large number of covariates.

2.1. DeepWeibull

The model configuration of DeepWeibull is presented in Fig-
ure 1, which consists of multiple full-connected layers fol-
lowed by ReLU,

ReLU(x) =

{
0 if x < 0

x if x ≥ 0,
(3)

as the activation function. To address the non-negativity of
the shape and scale parameters of Weibull models, different
from Bennis et al. (2020, 2021), we utilize SoftPlus,

SoftP lus(x) = ln(1 + ex), (4)

as the final activation function, which guarantees positive val-
ues for both β and η. Moreover, we incorporate scaling fac-

Figure 1. Model configuration of DeepWeibull.

tors to adjust the shape and scale parameters before the final
outputs, which can be learned during training or pre-set based
on prior empirical knowledge.

During the inference stage, the covariates are input into the
deep neural networks and the outputs are the shape and scale
parameters for the two-parameter Weibull distributions. An-
other contribution of our work is to address both censoring
and truncation problems when using DL-based survival mod-
els, which is covered in the following introduction to the loss
function in detail.

2.2. Loss Function

When performing MLE with statistical models, the likelihood
function is built as the basis for optimization. Considering
both censoring and truncation problems, the following four
cases are introduced for each subject i aged ti:

• Non-censored (δi = 1) and truncated (τi = 1):

f(ti)

1− F (tLi )
, δi = 1, τi = 1, (5)

where δi indicates if subject i is censored (δi = 0 if cen-
sored), τi indicates if subject i is truncated (τi = 1 if
truncated), f(t) is the p.d.f. and F (t) is the c.d.f., tLi
is the truncated time equal to the difference between the
origin time of subject i and the corresponding time when
the observation starts. Therefore, the truncation problem
is considered through conditional probability by dividing
1− F (tLi ), indicating the subject i has survived up to tLi
when the observation starts.

• Censored (δi = 0) and truncated (τi = 1):

1− F (ti)
1− F (tLi )

, δi = 0, τi = 1. (6)

where 1−F (ti) is used instead of f(ti) to cope with the
censoring problem, indicating the subject i has survived
up to ti during observation with no failure occurance.

• Non-censored (δi = 1) and non-truncated (τi = 0):

f(ti), δi = 1, τi = 0. (7)
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• Censored (δi = 0) and non-truncated (τi = 0):

1− F (ti), δi = 0, τi = 0. (8)

With these different cases, the likelihood function can be ob-
tained by the products of all subjects. Supposing we have a
survival dataset x = {x1, ..., xN}, where xi = (ti, δi, τi, t

L
i )

and N is the total number of subjects, then the likelihood
function can be computed as (Hong et al., 2009),

L(β, η | x) =
N∏
i=1

[
f(ti)

1− F (tLi )
]δiτi [

1− F (ti)
1− F (tLi )

](1−δi)τi

f(ti)
δi(1−τi)[1− F (ti)](1−δi)(1−τi).

(9)

Subsequently, by replacing the p.d.f. and c.d.f. with Equa-
tions 1 and 2, the log-likelihood function LL(β, η | x) as the
log-form of Equation 9 can be formulated as,

LL(β, η | x) = ln(

N∏
i=1

[
f(ti)

1− F (tLi )
]δiτi [

1− F (ti)
1− F (tLi )

](1−δi)τi

f(ti)
δi(1−τi)[1− F (ti)](1−δi)(1−τi))

=

N∑
i=1

δiτi[ln(
β

η
) + (β − 1)ln(

ti
η
)− (

ti
η
)β + (

tLi
η
)β ]

+ (1− δi)τi[−(
ti
η
)β + (

tLi
η
)β ]

+ δi(1− τi)[ln(
β

η
) + (β − 1)ln(

ti
η
)− (

ti
η
)β ]

+ (1− δi)(1− τi)[−(
ti
η
)β ].

(10)

The log-likelihood function derived is the key to MLE when
dealing with both censoring and truncation problems. The
loss function to train DeepWeibull is then introduced with the
negative log-likelihood function as,

L (β, η | x) = −LL(β, η | (ti, δi, τi, tLi )i=1,2,...,N ). (11)

2.3. Validation Framework

To validate the prediction accuracy of a survival model, the
concordance index (C-Index or CI) is a commonly used indi-
cator. It measures the ability of a model to correctly rank the
survival times of pairs of individuals. Let yi be the surviv-
ability of individual i, and let ŷi be the predicted survivability
from a survival model. The CI is defined as,

CI =

∑
i<j I(ŷi < ŷj)I(yi < yj) +

1
2

∑
i<j I(ŷi = ŷj)∑

i<j I(yi < yj)
(12)

where I(·) is the indicator function and only equal to 1 when
the condition is fulfilled. Intuitively, the CI can be interpreted

as the probability that, given two individuals with different
survival times, the model correctly predicts which individual
will survive longer. A model with a CI of 0.5 is no better
than random guessing, while a model with a CI of 1.0 makes
perfect predictions. The CI is a useful metric for comparing
model prediction accuracy, but it does not assess calibration
or goodness-of-fit. To compare the accuracy of predictions
on the number of failures given a base population and time
horizon, we propose a validation framework.

Given a survival dataset x̂ = {x̂1, ..., x̂N}, where x̂i, different
from x, can be expanded as (ti, δi, τi, tLi , T

S
i , T

E
i ). TSi is the

calendar time when the subject i enters the study, and TEi is
the calendar time when the observation on subject i ends. For
censored data, TEi is the same calendar time when the obser-
vation ends, while for non-censored data it is the same calen-
dar time when the event is observed. To perform prediction
based on existing data, we need to revert the current survival
data to its past presence in a given reference year Tref . The
reverted survival dataset x̂Tref can be generated by:

• Excluding data with TSi > Tref .

• For data with TSi < Tref < TEi , δ̂i = 0, t̂i = Tref−TSi .

Then, the prediction on the number of failures given a time
horizon h can be calculated as

N̂(h) =

NTref∑
i=1

F (t̂i + h)− F (t̂i)
1− F (t̂i)

(13)

whereNTref is the total number of subjects in x̂Tref and F (·)
is the estimated c.d.f. following Weibull distribution.

3. EXPERIMENTAL RESULTS

3.1. Preparation

The transformer lifetime data we used for experiments is pro-
vided by a power company, including the distribution trans-
formers at over 12,000 substations. As the collection of fail-
ure data only started after year of 2000, there is truncation
problem existing when performing survival analysis. The
event is defined as a failure happened to the transformer lead-
ing to the termination of service.

Two-parameter Weibull models were estimated using both
traditional optimization with MLE and DeepWeibull. In
this paper we adopted Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm (Fletcher, 2013) for MLE, denoted as
MLE (BFGS). In the following experiments with MLE
(BFGS), the data was first partitioned into 15 sets by dis-
tinct pairs of voltage classes and manufacturers, and the
Weibull distributions were estimated with each set indepen-
dently. When training DeepWeibull, the voltage class and
manufacturer were the input features, converted into binary
values with one-hot encoding. Hence, only one DeepWeibull
model was trained with the entire dataset, while different
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Table 1. Shape and normalized scale parameters for Weibull
models estimated from Type I experiment for each group.

No. βmle η̃mle βdw η̃dw
1 2.06 0.93 2.23 0.67
2 1.82 0.89 2.06 0.63
3 1.56 0.75 1.76 0.54
4 7.58 0.31 2.57 0.77
5 5.78 0.31 2.14 0.65
6 14.36 0.32 3.30 0.98
7 11.05 0.31 2.37 0.71
8 10.91 0.31 2.47 0.74
9 12.91 0.31 2.28 0.69
10 0.93 0.79 1.49 0.46
11 3.64 0.22 1.81 0.56
12 2.15 0.63 2.14 0.65
13 2.82 0.51 2.34 0.71
14 2.16 1.01 2.19 0.66
15 15.18 0.32 2.70 0.81

shape and scale parameters can be output on condition of dif-
ferent inputs. For DeepWeibull, the configuration of the net-
work is illustrated in Figure 1. As there are 3 different voltage
classes and 10 different manufacturers in the experiment data,
the features with dimension of 13 are input into the model.

To validate the model performance comprehensively, Type-I
and Type-II experiments are introduced:

• Type-I: We split the dataset into training and testing sets
in a time-independent manner. The model’s parameters
were estimated using the training set, and the perfor-
mance was evaluated on the testing set using the CI and
sum of log-likelihood, with T when c.d.f. F (T ) = 0.05
as the predicted survivability ŷi.

• Type-II: We reverted the data to its presence in previous
times by setting different reference years Tref as intro-
duced in Section 2.3. The parameters were estimated us-
ing the reverted data x̂Tref and then used to predict the
total number of failures in a given horizon h.

For Type-II experiments, we evaluated the performance of
different models using the mean absolute error (MAE),

MAE =
1

n

n∑
i=1

|Ni(h)− N̂i(h)|, (14)

and root mean squared error (RMSE),

RMSE =

√√√√ 1

n

n∑
i=1

(Ni(h)− N̂i(h))2, (15)

where n = 15 is the total number of groups, N̂i(h) is the
predicted number of failures for group i as in Equation 13,
andNi(h) is the actual number of failures within the horizon.

Figure 2. Cumulative distribution functions of Weibull mod-
els estimated by MLE (BFGS) w.T. on Type I experiment
training data for different groups.

Figure 3. Cumulative distribution functions of Weibull mod-
els estimated by DeepWeibull w.T. on Type I experiment
training data for different groups.

3.2. Type-I Experimental Results

The abbreviations w.o.T. and w.T. are used to denote with-
out truncation and with truncation, respectively, referring to
whether or not the truncation problem was considered in the
model, while all tests considered censoring problem. As
shown in Table 1, the shape and normalized scale parameters
estimated by MLE (BFGS) w.T. (βmle and η̃mle) and Deep-
Weibullw.T. (βdw and η̃dw) using Type-I experiment training
data for different groups are presented, which are also visual-
ized with c.d.f. in Figures 2 and 3 respectively.

To evaluate the prediction accuracy of the selected models,
the CI and the sum of log-likelihood are used. The results of
the testing phase are presented in Table 2. The DeepWeibull
w.T. model, which considers both censoring and truncation
problems, shows the optimal performance on the test data, as
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Table 2. Concordance index (CI) and sum of log-likelihood
(LL) evaluated on the test data from Type-I experiments.

Method CI Sum of LL
MLE (BFGS) w.o.T. 0.61 -206.14
MLE (BFGS) w.T. 0.68 -203.59
DeepWeibull w.o.T. 0.73 -201.91
DeepWeibull w.T. 0.73 -201.78

Figure 4. Testing results from Type-II experiments.

indicated by the highest CI and sum of log-likelihood. More-
over, considering the truncation problem improves the per-
formance of both methods, as observed in the results. While
MLE (BFGS) shows more significant improvement when the
truncation problem is considered during estimation, Deep-
Weibull can still achieve less biased estimations even without
considering it.

3.3. Type-II Experimental Results

For Type-II experiments, we have used 2001 to 2019 as ref-
erence years Tref for testing, with the end of the prediction
horizon fixed at 2020. This design allowed for a gradual in-
crease in the number of failure data available for model train-
ing as the reference year approached 2020, while also short-
ening the prediction horizon, i.e., h = 2020− Tref .

As shown in Figure 4, the DeepWeibull model outperforms
the traditional methods on failure number prediction in terms
of MAE and RMSE. When the data are limited, e.g., with

reference year from 2001 to 2005 where only 1 to 5 years of
failure data since 2000 are available, the Weibull models esti-
mated using MLE (BFGS) fail to reliably predict failures and
show significant errors. However, as the amount of data used
for modelling increases and the prediction horizon becomes
narrower, i.e., after 2015, both methods shows similar per-
formance, but DeepWeibull still outperforms the traditional
approach.

4. CONCLUSION

In this paper, we proposed a DL-based approach for estimat-
ing Weibull distributions of transformer failure probability
and demonstrated its effectiveness in prediction. Our Deep-
Weibull model outperformed traditional MLE using BFGS on
two types of experiments, indicating its superiority in mod-
elling and prediction accuracy.

Meanwhile, we investigated the impact of considering the
truncation problem on the performance of survival models
and found that it improved the performance of both traditional
methods and our model. However, the DeepWeibull model is
less susceptible to the truncation problem. Our results also
highlighted the importance of selecting an appropriate pre-
diction horizon and training data volume for predicting the
number of failures given a fleet of assets.

In conclusion, our results indicate that DL models, partic-
ularly the DeepWeibull model, can be an effective tool for
modelling and predicting failure probability. Future research
could focus on improving the interpretability of the model
and optimizing hyperparameters when working with datasets
of different profiles.
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