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ABSTRACT

The purpose of this study is to develop a novel concept of
smart structural systems recognizing their own structural in-
tegrity by an embodied high density sensor network. In our
concept, a number of sensor nodes are embedded in the host
structure, each of which reacts pointwise to the structural vi-
bration with a simple rule. This allows the whole nodes to be
mutually coupled through the elastic field, forming a neural
network that incorporates the dynamic characteristics of the
host structure as the coupling weights. In the previous study,
we presented that a single-neuron network as its minimum
configuration can exhibit a bifurcation of its dynamics behav-
ior, which can be used to detect the change of the network due
to damages. In this study, the formulation of networks with
multiple neurons deployed in a structure with single-mode
approximation is presented particularly focusing on the bi-
furcation analysis to reveal how the behavior of the network
is drastically altered depending of the network and structural
parameters. Numerical analysis is conducted to examine the
validity of the bifurcation analysis.

1. INTRODUCTION

Structural health monitoring (SHM) technology, which aims
to continuously, automatically, and remotely monitor the
healthiness of structures, was proposed in the 1990s to re-
duce structural maintenance costs. It has become more and
more realistic since the 2000s, when rapid advances in wire-
less sensor network technology made it possible to acquire
large amounts of data using sensors densely embedded in
structures. In fact, it has now become reasonable to deploy
1000 sensor nodes in a single structural system.

Typical sensor networks have a star or tree topology. Data are
collected at every sensor node and aggregated via these com-
munication links in one place to perform signal processing

and diagnostic algorithms. This is a centralized approach, in
which the communication and computational costs associated
with the concentration of data can be problematic as the in-
crease of the sensor nodes and more use of higher frequency
dynamical data (vibrations and waves) to perform early de-
tection of structural damage. Therefore, it is obvious that fur-
ther increase of sensor density will saturate the network band-
width and capacity of centralized computational resources
(Abdulkarem, Samsudin, Rokhani, & A Rasid, 2019).

One promising solution, as the second approach, to reduce
the burden on the wireless communication channel and com-
putational resources due to data concentration would be edge
computing. In this approach, the network is hierarchized, and
computational resources are allocated to intermediate nodes
close to the structure. This allows primary processing of data
to be performed locally, to transmit features, the higher-order
information extracted from the data, to higher-level nodes
instead of sending the raw data though the communication
channel. However, this approach does not change the fact
that data is still collected at the local node, and having some
rich computational resources locally may increase the cost of
power supply and maintenance, which prevents this approach
from being truly scalable.

As the third approach, the authors proposed to use the struc-
ture itself as a computational resource to realize a truly scal-
able sensor network (Masuda, Sakai, & Takashima, 2023;
Masuda, Takashima, & Sakai, 2023). This is done by building
a kind of neural network on the structure, hereafter referred
to as elastic wave field neural network (EWFNN), using the
elastic wave field as a medium, so that the structure itself ac-
quires an intelligent function to recognize its own healthiness
(Masuda, Sakai, & Takashima, 2023). Analogically speak-
ing, this is like building a “brain” function parasitically on
the structure, whereas the conventional SHM sensor network
is like placing it outside the structure (Fig. 1).
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Figure 1. Concept of EWFNN-based SHM.

Specifically, we consider a large number of active sensor
nodes deployed on the structure as neurons. One node per-
forms as both a sensor and an actuator, and reads the elastic
wave propagating through the structure as an input and out-
puts it as an excitation force to the structure after performing
a nonlinear activation function (Fig. 2). This means that these
neurons form a Hopfield-type fully-connected neural network
coupled via the elastic wave field of the host structure. In the
previous paper (Masuda, Sakai, & Takashima, 2023), we de-
signed a EWFNN operating in a single frequency, in which
all neurons operate in the same frequency with slowly vary-
ing amplitude and phase. The operation of the neuron is then
regarded as a nonlinear dynamical system of the complex am-
plitude, and the connection between arbitrary two neurons is
represented by a complex weight, i.e., the value of the fre-
quency response function (FRF) between them at the operat-
ing frequency.

Since the FRF between neurons act as the connection weights
in this network, the behavior of the network essentially re-
flects the dynamic characteristics of the structure. Therefore,
the entire network can function as a damage detector only re-
lying on simple and independent calculation, not referring to
the internal states of other neurons if the network behavior
drastically change with the presence of the damage. In the
previous paper (Masuda, Sakai, & Takashima, 2023), it was
presented that the network can be designed so that it yields
a bifurcation caused by the damage. This can be a major ad-
vantage over the conventional sensor network-based SHM ap-
proaches because it does not require inter-neuron data trans-
mission or data aggregation to perform damage detection al-
gorithms.

The previous study presented the formulation of EWFNN
driven by a single-frequency excitation, particularly focus-
ing on a single-neuron network as the smallest configura-
tion (Masuda, Sakai, & Takashima, 2023). In this study,
the formulation and analysis are extended to multiple-neuron
configuration, assuming single-mode operation. Equilib-
rium analysis is performed to derive a simple criterion of
Hopf bifurcation of the complex amplitude due to damage,
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Figure 2. Structure of EWFNN.

which corresponds to the change from modulated response
to steady-state, and to discuss how the existence of multiple
neurons can contribute to the detection of local damage. Nu-
merical experiments are presented to validate the analytical
findings using a single-mode model of a thin plate structure.

2. FORMULATION

2.1. Modeling of neurons operating in single frequency

The basic formulation of EWFNNs presented in the previous
study (Masuda, Sakai, & Takashima, 2023) is briefly summa-
rized in this section. The EWFNN operating under a single
sinusoidal excitation with an operating frequency of ωo can
be treated as a continuous-time dynamical system of slowly
varying complex amplitudes of the input and output of neu-
rons, of which absolute value and argument represent slowly
varying real amplitude and phase, respectively. Let wn, fn,
and fin be the input and output of nth neuron, and the in-
put force exciting the network, respectively. Then, the slow
dynamics assumption allows us to represent them as

wn(t) = ŵn(t)e
iωot, fn(t) = f̂n(t)e

iωot, fin(t) = f̂ine
iωot

(1)
where variables with hat denote slowly varying complex am-
plitudes. The input-output dynamics of the nth neuron is then
given by

τn
dûn(t)

dt
+ ûn(t) = ŵn(t) + βn (2)

f̂n(t) = γn tanh(αn|ûn(t)|)ûn(t)/|ûn(t)| (3)

where ûn is a complex-valued state variable, and τn is a time
constant set much larger than 2π/ωo to ensure the slow dy-
namics of the network. Equation (3) states that the output
is calculated by performing a complex split activation func-
tion classified as type B by Bassey et al. (Bassey, Qian, & Li,
2021) on the state variable, where αn and γn are input and
output gains, respectively. This formulation is similar to that
used in the formulation of continuous-time Hopfield networks
(Hopfield, 1984; Chen, Zhang, & Wang, 2004).

The dynamics of the host structure is described using the
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FRFs at the operating frequency:

ŵn(t) =

N∑
m=1

Gnm(ωo)f̂m(t) +Gin
n (ωo)f̂in (4)

where Gnm(ω) is the FRF from the mth neuron to nth neu-
ron, andGin

n (ω) is the FRF from the input force to nth neuron.
From Eqs. (2), (3), and (4), one can obtain the state equations,
i.e., differential equations of neuron dynamics, as

τn
dûn(t)

dt
+ ûn(t)

=

N∑
m=1

Gnm(ωo)γm tanh(αm|ûm(t)|) ûm(t)

|ûm(t)|

+Gin
n (ωo)f̂in + βn (n = 1, . . . , N) (5)

Similar to the previous study, the bias β is supposed to be
trained in the training phase such that

βn = −Gin
n (ωo)f̂in (6)

This is easily done by setting the output gain γn to zero, and
adjusting βn such that the state variable ûn vanishes.

2.2. Bifurcation analysis for multiple-neuron network on
single-mode host structure

Let us first assume that the host structure is operated in a spe-
cific single mode, and all the neurons have the same time con-
stant τ . Then, the state variables of all the neurons can be
represented in the one-dimensional subspace that the mode
shape of the target mode spans as

ûn(t) = ϕnξ̂(t) (7)

where ϕn is the mode shapes of the target mode at the location
of the nth neuron, and ξ̂ is the reduced state variable in the
modal coordinate. Furthermore, assuming that the neuron’s
input is the displacement, or its spatial derivatives, the FRF is
specified in the form of

Gnm = λ(ωo)ϕnϕm (8)

where

λ(ω) =
1

mk

−ω2 + 2iζkωkω + ωk
2

(9)

where ωk, ζk, and mk are the natural frequency, damping
ratio, and modal mass of the target mode, respectively.

Substituting Eqs. (6), (7) and (8) into Eq. (5) leads to a

reduced-order state equation in the modal coordinate

τ
dξ̂(t)

dt
+ ξ̂(t)

=λ(ωo)

N∑
n=1

γn|ϕn| tanh(αn|ϕn||ξ̂(t)|)
ξ̂(t)

|ξ̂(t)|
(10)

This equation gives an autonomous system that rules the be-
havior of all neurons in the network.

In order to understand the asymptotic behavior of this net-
work, the autonomous system Eq. (10) is analyzed in terms
of its equilibria and stability. First, the state variable ξ̂ is rep-
resented in a polar form as

ξ̂(t) = a(t)eiθ(t) (11)

Substituting it into Eq. (10) followed by multiplying e−iθ(t)

leads to

τ

(
da(t)

dt
+ ia(t)

dθ(t)

dt

)
+ a(t) = λ(ωo)ψ(a(t)) (12)

where ψ is the amplitude activation function in the modal co-
ordinate defined as

ψ(a) =

N∑
n=1

γn|ϕn| tanh(α|ϕn|a) (13)

Finally, dividing above equation into real and imaginary parts
gives

τ
da(t)

dt
+ a(t) = Re [λ(ωo)]ψ(a(t)) (14)

τ
dθ(t)

dt
=

1

a(t)
Im [λ(ωo)]ψ(a(t)) (15)

The above system of equations is a straightforward extension
of the equations for the single-neuron configuration (Masuda,
Sakai, & Takashima, 2023). Similarly, Eq. (14) is a real-
valued scalar homogeneous differential equation of ampli-
tude, and Eq. (15) can be solved by substituting the solution
of Eq. (14) and integrating it.

The modal activation function ψ is a wighted sum of the
activation functions (tanh) of all neurons, thus, it inherits
the properties of tanh, i.e., monotonically increasing start-
ing from the origin, convex upward, and saturated. These
properties allows the similar bifurcation analysis of Eq. (14),
which concludes that the network has two operation modes
with different attractors:

when Re [λ(ωo)]ψ
′(0) > 1,

it has a limit cycle ξ̂(t) = ace
i(ωct+θ0) as its attractor such

that
ac = Re [λ(ωo)]ψ(ac) (16)

ωc =
1

τac
Im [λ(ωo)]ψ(ac) (17)
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Figure 3. Top view of a rectangular plate as the target struc-
ture. All the edges are simply supported.

thus, the response of the structure at the location of the nth
neuron is derived from Eqs. (2), (6) and (7) as

ŵ(t) = (1 + iτωc)acϕne
i(ωct+θ0) +Gin(ωo)f̂in (18)

which states that the response of the structure in the time do-
main exhibits a modulation in amplitude and phase;

otherwise,
it has a point attractor at the origin, thus, the response

of the structure at the location of the neuron is

ŵ(t) = Gin(ωo)f̂in (19)

which means that the response of the structure in the time
domain is steady-state, and the neuron ceases its output.

This is a Hopf bifurcation of the complex amplitude. In other
words, this changes the response in the time domain from
steady-state to amplitude and phase modulation. The bifur-
cation parameter is Re [λ(ωo)]ψ

′(0), which is further calcu-
lated as

Re [λ(ωo)]ψ
′(0)

=Re

[
1

mk

−ω2
o + 2iζkωkωo + ωk

2

]
N∑

n=1

αnγn|ϕn|2

(20)

Hence, both the global parameters (natural frequency and
modal damping ratio) and local parameters (mode shapes)
govern the bifurcation. This means that the local change of
the mode shapes can affect the global behavior of the net-
work.

Table 1. Values of parameters

Description Symbol Value
Dimensions of plate Lx 1.4

Ly 1
Natural frequency of (2,2) mode ωk 6.04
Modal damping ratio ζk 0.01
Modal mass mk 1
Time constant of neuron τ 10
Input gain αn 2
Output gain γn 1
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Figure 4. (2,2)-mode shape and neuron location.

2.3. Bifurcation-based SHM

The concept of the EWFNN-based SHM is to perform dam-
age detection based on the behavior of the EWFNN built
on the host structure. The core idea is to utilize the bi-
furcation between the limit cycle (modulated response) and
the point attractor (steady-state response) of the network re-
sponse to detect the change of the dynamics of the host struc-
ture caused by damages. The finding described above that the
changes of not only the global modal parameters but also the
local mode shapes can yield the global bifurcation suggests
the potential benefit of the densely deployed multiple-neuron
EWFNN as a damage detector. It can be more sensitive to lo-
cal damages than the single-neuron network (Masuda, Sakai,
& Takashima, 2023), which only has sensitivity to the global
modal parameters.

3. NUMERICAL EXAMPLE

3.1. Target structure

An illustrative numerical example is presented to show the
validity of the presented analysis of the bifurcation of the
network behavior. A simply supported isotropic rectangular
plate depicted in Fig. 3 was presumed as the target structure.
Four neurons and one excitation neuron were deployed at the
locations indicated in the figure. The values of the relevant
parameters are listed in Table 1. Note that all the parameters
are appropriately nondimensionalized.

We assumed that the dynamics of the plate is described by
a single dominant mode (2,2) at the operating frequency and
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Figure 5. Results of numerical experiments for ωo = 0.98ωk.
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Figure 6. Results of numerical experiments for ωo = 0.9ωk.

that the neurons measure the out-of-plane displacement of the
plate as their input. The (2,2)-mode shape is shown with the
location of the neurons in Fig. 4. As indicated in the figure,
the neurons 1, 2, and 3 are located near the antinode of the
(2,2)-mode, whereas the neuron 4 is near the nodal line.

3.2. Results

Numerical experiment was conducted for three different oper-
ating frequencies to verify the bifurcation analysis presented
in the previous section. First, as the training phase, the out-
put gain γ of the neuron was set to zero, and the bias was
trained as described in Eq. (6). Then, the output gain was set
to the prescribed value, and the state variables of the network
were calculated by numerically integrating Eq. (5) by ode45
of MATLAB with randomly set initial values. The displace-
ment responses at the neurons were calculated from Eq. (4).

The results are shown in Figs. 5, 6, and 7 for ωo = 0.98ωk,
0.9ωk, and 1.02ωk. Each of figures shows (a) the loci of the
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Figure 7. Results of numerical experiments for ωo = 1.02ωk.

complex amplitudes of the displacements at the neuron lo-
cation ŵn, in which the colors of the lines are correspond-
ing to the colors of the neurons depicted in Fig. 4, (b) the
shape of the modal activation function ψ(a) with the line of
1/Re [λ(ωo)], and (c) the temporal responses of the displace-
ments at the neuron locations, w1, w2, w3, and w4.

The plots clearly show that the network responses are dras-
tically changed by the small variation of the operating fre-
quency. The network was attracted to modulated responses,
as shown in Fig. 5, because the operating frequency was set
slightly below the natural frequency where the real part of the
λ is greater than the threshold 1/(ψ′(0)). In this case, the
modal activation function has a stable intersection with the
line of 1/Re [λ(ωo)] at a positive value of a, which corre-
sponds to the limit cycle amplitude ac. In contrast, when the
operating frequency moved away from the natural frequency,
the network converged to a steady-state response, as shown
in Figs. 6 and 7, since real part of the λ becomes smaller
than the threshold 1/(ψ′(0)). In these cases, the modal ac-
tivation function has a stable intersection with the line of
1/Re [λ(ωo)] only at the origin, which corresponds to the
point attractor.

4. CONCLUSIONS

In this study, the formulation of EWFNN investigated in the
previous study was extended to multiple-neuron configura-
tion, assuming single-mode operation. The formulation of
the network was presented and the equilibrium analysis was
performed to derive a simple criterion of Hopf bifurcation of
the complex amplitude of the state variables of the neurons
due to the change of the network and structural parameters.
Then, numerical analysis was conducted to examine the va-
lidity of the bifurcation analysis. The findings of the bifurca-
tion analysis suggested the potential benefit of dense deploy-
ment of neurons in EWFNN to perform as a damage detec-
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tor because the analysis concluded that the bifurcation of the
network behavior can be triggered not only by the changes of
global modal parameters but also by the change of local mode
shapes.

Future study may include more comprehensive analysis of the
sensitivity of the bifurcation to the local structural parameters
and how the sensitivity can be enhanced by designing more
appropriate activation function as well as the gain parameters
in the neuron. Extension of the theory to multi-mode situation
would be another challenge.
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