

A Study on the Intent-based System Design Automation Method

for Fault Detection and Fault Tolerance

Takayuki Kuroda, Toshiki Watanabe and Tatsuya Fukuda

NEC Corporation, Secure System Platform Laboratories, Kawasaki, Kanagawa, 211-8666, Japan

kuroda@nec.com, tos_nabe@nec.com, t_fukuda1987@nec.com

ABSTRACT

ICT systems are becoming an important infrastructure

indispensable for business operations in various industries.

While the requirements are becoming more diverse and

complex, stable service provision is required. As a result,

the burden on operations is increasing, and there are

growing expectations for automation technology to solve

this problem. This study investigates techniques to

significantly reduce the burden on operators by automating

the construction and maintenance of systems that satisfy

Intent, a concise description of users' requirements.

However, even using the results of previous research, it has

been difficult to automate operations with consideration for

the stability of service provision. Therefore, this paper

describes an automated method based on intent for detecting

failures that occur in the target system and an automated

design method for fault-tolerant systems. First, we describe

the basic concept, present the results of thought experiments,

and discuss its effectiveness.

1. INTRODUCTION

In recent years, ICT systems have become critical

infrastructure supporting business operations in many

industries, and their prompt and stable provision has

become an increasingly important issue. At the same time,

the diversification of needs for ICT systems and the

evolution of virtualization technologies have made system

configurations more complex, and stable operation has

become more difficult. Therefore, automation technology is

needed to operate systems easily and stably (Beyond 5G

Promotion Consortium White Paper Subcommittee, 2023).

In response to these needs, international standards

organizations such as TMForum and ETSI have proposed

the concept of intent-based autonomous network operation

(TM Forum, 2020)(ETSI, 2022). In autonomous operation,

the user only needs to enter the intent, and the network that

satisfies the intent is expected to be automatically

constructed and maintained. The author's group has also

promoted research and development of autonomous

operation of ICT systems, and in particular, has proposed an

automatic design technique for ICT systems based on intent

(Kuroda, 2022).

However, existing automatic design based on intent has

neither established a design method that takes fault

tolerance into account nor a fault detection method, making

it difficult to use for stable system operation. Therefore, this

study proposes an extension of automatic design techniques

to include fault-tolerance considerations and a fault

detection mechanism. This paper outlines the basic

methodology, presents the results of a thought experiment

on its operation based on a sample scenario, and discusses

its effectiveness.

In the following sections of this paper, Section 2 provides

an overview of existing automatic design techniques,

Section 3 describes the proposed automatic design method

with fault detection and fault tolerance, and Section 4

presents thought experiments and discusses its effectiveness.

Finally, Section 4 presents the conclusions.

2. AUTOMATED SYSTEM DESIGN TECHNOLOGY

Automated system design technology is a technology that

derives and outputs a concrete system configuration upon

input of an intent describing abstract system requirements.

Because automated design technology is a technology that

AP

(a) Topology (c) Concretization patterns(b) Entity types

AS DB

SV SV

SW

AP

AS DB

AP’

AP

AP

AS DB

AP

AP’

Selection Completioninheritance

dependency

Figure 1. Main data handled by

automated system design technology.

4th Asia Pacific Conference of the Prognostics and Health Management,
Tokyo, Japan, September 11 – 14, 2023 OS07-04

This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

mailto:kuroda@nec.com
mailto:tos_nabe@nec.com
mailto:t_fukuda1987@nec.com

Asia Pacific Conference of the Prognostics and Health Management Society 2023

2

mechanically mimics the thought process of human design,

it is easy to understand the mechanism for automated design

if we first imagine the thought process of a human designer.

When humans design a system, they are first given abstract

requirements. The requirements consist of several functional

and non-functional requirements. The designer replaces the

functional requirements with equipment that correspond to

the specific means of achieving them. There are often

multiple choices of equipment that can be selected, and the

designer selects the equipment that will meet the given non-

functional requirements. The selected equipment also has

other requirements, such as other functions or a certain

amount of resources, as constraints for it to operate properly.

The designer searches for a combination of equipment that

will satisfy all of these conditions. In order to make the

search process efficiently, the designer should not suddenly

select a specific product, but rather concretize the process

step by step, first establishing categories of realization

means, and then selecting specific products if they are

appropriate.

Below is an overview of the main data and algorithms

handled by automated system design technology.

Figure 1 shows the main data handled by Automated system

design technology. The input intent, the output

configuration, and the proposed configuration that appears

during the design process are all represented as a topology

in the form of a graph, as shown in Figure 1 (a). Nodes

represent components, and edges represent relationships

between components, which together are called entities.

Entity must have id and type and may have properties and

constraints. The abbreviations in the figure have the

following meanings: AP means Application, AS means

Application Server, DB means Database, SV means Server

and SW means Network Switch.

Figure 1 (b) shows the definition of the type of an entity.

type mainly defines inheritance, dependency, and a flag

indicating whether it is a concrete type or not. Inheritance

indicates what kind of type it is, and dependency indicates

the expected surrounding topology required for an entity of

that type to operate. For example, Linux inherits the OS and

has as a dependency the surrounding topology of being

hosted by Machine.

There are two types of topology embodiments: selection and

completion. This is illustrated in Figure 1 (c). Selection is

the operation of replacing one abstract entity type with

another that inherits it. The type to inherit is given by the

definition of inheritance. Completion is the operation of

adding a surrounding topology around an entity, the specific

method of which is derived from the definition of

dependency.

Figure 2 shows the algorithm for automated system design.

Automated system design is a search process in which,

starting from an intent, the steps of concretization consisting

of proposals and decisions are repeated, such that the end

condition is the discovery of a fully concretized topology.

Proposal is a process to generate multiple new topologies

that are one level of embodiment of a certain topology. New

topologies are generated by applying possible candidates for

selection and completion to each entity in the target

topology. Decision is the process of selecting the most

promising one from the new generated topologies. It verifies

that each topology satisfies the constraints and evaluates the

optimization conditions to determine the topology that

satisfies the conditions and has the highest evaluation. A

Topology is considered fully concretized when all the entity

types it contains are concrete and dependencies are satisfied.

3. FAULT DETECTION AND FAULT TOLERANCE WITH THE

INTENT-BASED SYSTEM DESIGN METHOD

This section describes in detail the fault detection method

assuming the use of the automated system design and the

fault-tolerant automated system design technique. The

effectiveness of this method is also discussed after showing

the results of thought experiments.

3.1. Fault detection using dependencies between entities

 As described in Section 2, automated system design

repeatedly complements dependencies to reach the design

result. Therefore, in the topology of the design result, the

One step

Another
step

proposal
decision

…

AP

AS DB

SV SV

SW

AP

AS DB

SV SV

SW

(a) dependency tree (b) Fault detection with the
dependency tree

(X)

Figure 3. Fault detection with dependency tree.

Figure 2. Algorithm of Automated System Design.

Asia Pacific Conference of the Prognostics and Health Management Society 2023

3

dependencies among all entities are clarified. By tracing

these dependencies, faults can be detected. Figure 3 shows a

dependency tree and fault detection using a dependency tree.

As shown in Figure 3 (a), dependencies are recorded

between each entity in the topology of the design result,

forming a tree structure. Figure 3 (b) shows the fault

detection using the dependency tree when a functional

failure of the AP is observed. First, the state of each entity

on which the AP depends is examined, and it is found that

the connection between the AS and the DB has become

disconnected. Then, by examining the status of each entity

on which the connection between AS and DB depends, we

can see that the connection between the servers (SV) that

host them is disconnected. Finally, by checking the status of

entities on which the connection between SVs depends, the

root cause can be found: the wired connection between the

server hosting the AS and the SW is broken. By defining the

method of checking the status of each entity in advance for

each entity type, a series of status check processes can be

automated.

By traversing the dependency tree in the reverse direction, it

is also possible to check the range of influence when the

function of a certain component is stopped. For example, if

the SW in the figure is to be stopped for maintenance, it can

be confirmed that stopping the SW will affect the function

of the AP.

3.2. Automated system design for fault tolerance

3.2.1. Overview

Next, we discuss automated system design with fault-

tolerance in mind. First, the definition of fault-tolerance in

this paper is presented, followed by an explanation of the

mechanism for automated design with such properties.

In this paper, we define that an entity e has fault tolerance n

as the fact that e does not malfunction even if n of the

entities on which e depends malfunction, and we denote this

as isTolerant(e, n). In other words, if n is 1, it is tolerant to a

single point failure, and if n is 2, it is tolerant to a two-point

failure. In practice, it is known that tolerance to two-point

failures is sufficient, and in this study, the value range of n
is considered to be from 0 to 2.

Next, we discuss fault-tolerant automated system design. In

general, extending automated system design to design a

topology with certain properties requires two things: (1)

extending the proposal mechanism for automated design to

derive the desired topology candidates, and (2) extending

the decision mechanism to select the one with the desired

properties from the generated topology candidates. In the

sections that follow, we describe the concretization patterns

for proposing candidate redundant topologies and

constraints on fault-tolerance and provide examples of

design results obtained through automated system design

with these patterns and constraints.

3.2.2. Concretization patterns that generate redundant

topologies

To ensure that an entity e does not become malfunctioning

even if some of the entities on which e depends are

malfunctioning, the entities on which e depends must be

sufficiently redundant. Therefore, we first distinguish

between singular and plural forms of an entity and assign

quantity as an attribute to express the number of pieces.

Then, we introduce a concretization pattern such that a

plural entity is decomposed into its number of singular

entities.

Figure 4 shows concretization patterns for plural entities.

Figure 4 (a) is a pattern that decomposes a plural component,

and Figure 4 (b) is a pattern that decomposes a plural

relation. Entities drawn with double lines indicate that they

are plural entities. The subscripts on the plural entities

indicate the quantity of the entities. The dotted rounded

rectangles and numbers on the decomposed topology

indicate the number of singular entities that have been

decomposed from the same plural entity. The decomposition

of component is relatively simple. As shown in Figure 4 (a),

n plural components are decomposed into n singular

components. Compared to component, the decomposition of

relation is somewhat more complex. As shown in Figure 4

(b), there are two ways to decompose a plural relation: by

directly connecting it to the entities at both ends (Figure 4

(b1)) or by relaying other entities (Figure 4 (b2)). First, let

us discuss the former method of direct connection.

Forgetting for the moment that relation is plural, let us

consider the decomposition of the components at both ends

of relation. In Figure 4 (b1), s and d, the components at both

ends of relation r, are plural components with i and k

quantities, respectively, and are decomposed into i singular

components of s1, s2, … si, and k components of d1, d2, ... dk,

respectively. At this point, r is understood to be the mesh

that connects these s1..i and d1..k, respectively. In addition to

the above, the fact that r is plural means that each

connection between s1..i and d1..k, is plural. In Figure 4 (b1),

each relation is drawn as a triple line and ×j indicates that

there are j connections each. In Figure 4 (b2), j relay entities

[n] [i] [k][j]

…

n

×j
… …

i k

… … …

i kj

or

(a) plural component (b) plural relation

s d
r

(b1) direct (b2) indirect

Figure 4. Concretization patterns for plural entities.

Asia Pacific Conference of the Prognostics and Health Management Society 2023

4

are placed between s and d, each of which is mesh

connected. In this case, each relation is singular. Figure 4

(b1) and (b2) both show that the relation between any s1..i

and d1..k is preserved even if multiple connections or relay

entities are broken.

Using the above patterns, we can propose any necessary and

sufficient redundant topologies by assuming that the

quantities of the entities can be 0, 1, and 2.

3.2.3. Conditions for fault-tolerant topologies

We describe conditions for determining suitable fault-

tolerant topology candidates from the redundant topologies

generated by the methods described in the previous section.

Figure 5 shows the condition for function isTolerant(e, n) to

return true. Here e is the entity to be evaluated for fault-

tolerance, and n is the maximum number of failure points at

which malfunctioning of e should be avoided.

The conditions are divided according to whether the type of

entity e is singular or plural, and whether it is composite or

primitive.

Here, we introduce the new concepts of composite and

primitive. composite is a conceptual entity that represents a

group of multiple entities. For example, the system shown

in Figure 7 refers to the application, the database, and the

connection between them, and is a grouping of these three

entities. Primitive is an entity that has its own substance.

When a Composite is concretized, the entities it contains are

added to the surrounding topology. The embodiment of

Composite is similar to the completion in Figure 1(c), but

the meaning is somewhat different. The latter is an

operation that adds other dependent entities, while the

former is an operation that makes explicit the entities it

encompasses. The impact of a fault-tolerance requirement

for a primitive entity on the entities it depends is different

from the impact of a fault-tolerance requirement for a

composite entity on the entities it contains.

Here, the condition for function isTolerant(e, n) to return

true is that:

⚫ if e is singular, it depends on whether it is composite or

primitive:

➢ if e is composite, each entity i it contains must

satisfy isTorelant(i, n);

➢ if e is primitive, n must be zero.

⚫ If e is plural, then the quantity of e is greater than n

and the entity e depends on satisfies the exclusivity

condition described below.

Figure 6 illustrates the exclusivity of dependent entities.

Two entities are mutually exclusive if the topologies on

which they depend do not contain any identical entities. Let

us assume that the dependent topology of an entity is the

topology consisting of the entities on which it depends and

the group of entities obtained by iteratively tracing the

entities on which it further depends. Figure 6 (a) is mutually

exclusive, while (b) is not exclusive because the two

dependent topologies contain the same entity of SV.

By checking for exclusivity, fault tolerance can be assured.

For example, even if redundancy is used to provide fault

tolerance for an application, if those applications are

deployed on a single server, that server will become a single

point of failure. By checking for exclusivity, it is possible to

guarantee that each server, the entity on which an

application depends, is provided with its own server,

thereby avoiding the occurrence of a single point of failure.

However, since too much exclusivity can lead to excessive

redundancy, it is effective to add measures to mitigate the

strictness, for example, by assuming that the cloud

infrastructure itself is highly reliable, so that even if two

entities contain the identical entities of the cloud

infrastructure, the exclusivity between those entities is not

impeded.

3.2.4. Automated design for fault tolerance

The basics of automated system design, concretization

patterns for generating redundant topology candidates, and

fault-tolerance conditions have been described so far. Fault-

tolerant automated system design is achieved by repeating

concretization steps in which redundant topologies are

proposed and a proposal that satisfies the fault-tolerant

condition is selected from among the redundant topologies

in each concretization step.

pluralsingular

composite

primitive

e.quantity > n
&&

exclusive(e)

forall(
e.depends,
(i)->{isTolerant(i, n)}

)

n == 0

if e is

AP

AS

SV

AP

AS

SV

AP

AS

AP

AS

SV

exclusive not exclusive

(a) (b)

Figure 5. Condition for function isTolerant(e, n) to return

true.

Figure 6. Exclusiveness of dependency.

Asia Pacific Conference of the Prognostics and Health Management Society 2023

5

Figure 7 is an example of a thought experiment in

automated system design with redundancy. (a) is the input

intent. This intent defines one component of the system type

and specifies fault tolerance against single point failure as a

constraint condition. The "$" in the figure means that the

entity to be constrained, indicated by the line, is assigned.

In (b), the system is expanded to introduce the internal

application (AP) and database (DB) and their connection

relations. As already mentioned, the condition for an entity

of Composite type to be fault-tolerant is that all its internal

entities are fault-tolerant, so the constraint condition is

delegated to each internal entity. The entities in the system

are all plural entities, because they were specified as plural

in the definition of the system type. If "singular" is specified

here, no candidate topology that satisfies fault-tolerance can

be generated at this point, and the design will fail. In (c),

each plural entity is decomposed into two entities and given

an exclusivity condition, and the connection between the

application and database is converted to a connection

through the load balancer's configuration (LC). Although

the configuration in which each entity is decomposed into

three or more entities also satisfies the condition of fault

tolerance, the minimum necessary configuration is selected

by taking other conditions such as resource saving into

account. In the following (d) and (e), the dependencies of

each entity are complemented. In order to satisfy the

exclusivity condition, a topology has been selected in which

different entities are assigned to each of them. In (f), all

dependencies have been complemented, so the design is

completed here in this thought experiment. In practice,

concretization will continue until a specific product for each

entity is selected.

3.3. Discussion

For human engineers in general, designing ICT systems that

meet fault tolerance requirements is a complex and difficult

task. In particular, the task of safely performing complex

operations, such as changing the requirements of a system in

operation or temporarily changing some configurations for

maintenance, while maintaining fault tolerance is very

complex and carries the risk of causing failures.

Using this technology, even complex operations such as

those described above can be performed safely by simply

and reliably designing configurations that meet the desired

fault tolerance.

In addition, along with fault tolerance, it is possible to

combine performance, budget, and other requirements to

design an efficient and secure configuration with the

necessary and sufficient redundancy in the right place at the

right time.

In addition, failure detection using dependencies between

entities, which are clarified at design time, can be used to

automatically check whether the required redundancy is

being met.

4. CONCLUSION

This paper describes an extension to consider fault tolerance

in automated system design techniques and a fault detection

method that uses information on dependencies among

entities that arise in the automated design process. After

presenting the design results of the thought experiment, the

paper shows that the technique can easily and reliably

perform complex system design tasks to satisfy fault-

tolerance requirements. In the future, we will demonstrate

the effectiveness of this technique through a prototype of an

automated system design function based on the method

described in this paper.

REFERENCES

Beyond 5G Promotion Consortium White Paper

Subcommittee, "Beyond 5G White Paper - Message to

the 2030s -", version 2.0, March 13, 2023.

https://b5g.jp/doc/whitepaper_en_2-0.pdf

TM Forum. Autonomous Networks: Empowering Digital

Transformation For Smart Societies and Industries.

TMForum White Paper, 2020.

https://www.tmforum.org/resources/whitepapers/autono

mous-networks-empowering-digitaltransformation-for-

smart-societies-andindustries/.

S AP DB

AP

AP

LC

LC

DB

DB

AP

AP

LC

LC

DB

DB

AS

AS

LB

LB

DS

DS

AP

AP

LC

LC

DB

DB

AS

AS

LB

LB

DS

DS

SV

SV

SV

SV

SV

SV

SWSW SW SW

AP

AP

LC

LC

DB

DB

AS

AS

LB

LB

DS

DS

SV

SV SV

SV SV

SV

(a) (b) (c) (d) (e) (f)

isTolerant($, 1) isTolerant($, 1)

exclusive($)

Figure 7. Example of automated system design with a constraint of fault tolerance.

Asia Pacific Conference of the Prognostics and Health Management Society 2023

6

ETSI, “Intent driven management services for mobile

networks”, TS 128 312 V17.0.1 (3GPP TS 28.312

version 17.0.1 Release 17), Jul. 2022.

T. Kuroda, Y. Yakuwa, T. Maruyama, T. Kuwahara and K.

Satoda, "Automation of Intent-based Service Operation

with Models and AI/ML," NOMS 2022-2022

IEEE/IFIP Network Operations and Management

Symposium, Budapest, Hungary, 2022, pp. 1-6, doi:

10.1109/NOMS54207.2022.9789924.

Takayuki Kuroda received M.E and Ph.D. degreed from

the Graduate School of Information Science, Tohoku

University, Sendai, Japan in 2006 and 2009. He joined NEC

Corporation in 2009 and has been engaged in research on

model-based system management for Cloud application and

Software-defined networks. As a visiting scalar in the

Department of Electrical Engineering and Computer

Science at the Vanderbilt University in Nashville, he studied

declarative approach of automatic workflow generation for

ICT system updates from 2013 to 2014. He is currently

working at NEC on automation technology for system

design, optimization, and operation.

Toshiki Watanabe received Ph.D. from the Graduate

School of Information Science and Technology, Osaka

University, Suita, Japan in 2010. He joined NEC

Corporation in 2010 and has been engaged in research on

SDN (Software-Defined Networking). His research interests

include security and designing network architecture.

Tatsuya Fukuda received Ph.D. degreed from the Graduate

School of Information Science and Technology, Osaka

University, Suita, Japan in 2015. He joined NEC

Corporation in 2015 and has been engaged in research on

network performance measurement and estimation. He is

currently working at NEC on automation technology for

system design, optimization and operation.

