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ABSTRACT 

This study proposes a multiphysics-informed deep operator 

network (MPI-DeepONet) to predict the thermal runaway of 

lithium-ion batteries (LIBs) under a variety of thermal 

operational and abuse conditions. Specifically, this study 

aims to address the functional mapping from a heating curve 

to predict the evolution of the temperature of a LIB and 

dimensionless concentration of dominant components of the 

LIB including an anode, cathode, electrolyte, and solid 

electrolyte interphase. The proposed method has two key 

characteristics. First, the MPI-DeepONet is supervised by 

using ordinary and partial differential equations, which 

govern highly complex and nonlinear phenomena of thermal 

runaway of a LIB, including the chemical reaction 

degradation of the dominant four components and 

thermodynamics. This feature enables to train of the proposed 

neural network with a small amount of data available, 

suggesting that the proposed neural network is accurate and 

robust even though the proposed method is trained even with 

limited data. Second, the proposed neural network is trained 

with the data that is generated from high-fidelity finite 

element analysis under a variety of thermal operational and 

abuse conditions because measurements for the thermal 

runaway of a LIB are limitedly available. Hence, the MPI-

DeepONet does not require actual measurements, which is 

extremely difficult in field experiments. Finally, the accuracy 

and robustness of the proposed architecture are verified 

through actual measurements and other scenarios, which are 

different from the data trained. The analysis of results reveals 

that the MPI-DeepONet secures higher accuracy and 

robustness than purely data-driven DeepONet. The proposed 

surrogate model, which is faster than existing surrogate 

models, suggesting that this model contributes to developing 

a digital twin model of a LIB, which can be deployed on a 

battery thermal management system and provides sufficient 

information for effective power and energy management.  

 

1. METHODOLOGY 

The thermal runaway phenomenon in batteries involves a 

complex interplay of factors and chain reactions, 

encompassing aspects like thermodynamics, chemical 

reaction decomposition, and the aging of individual 

components. Traditionally, methods such as the finite 

element method and finite difference method have been 

employed to simulate thermal runaway while considering 

multiphysics considerations. However, it's important to note 

that when using numerical analysis techniques to calculate 

intricate multiphysics phenomena like thermal runaway, 

significant computational time and substantial computational 

resources are necessary. Consequently, the traditional 

numerical analysis approaches face limitations when it comes 

to real-time simulation of thermal runaway under diverse 

battery operating conditions. 

To tackle this challenge, this study introduces a 

multiphysics-informed deep operator network (MPI-

DeepONet) aimed at developing a predictive model for the 

thermal runaway of lithium-ion batteries (LIBs) under 

various thermal operational and abuse conditions. The 

methodology involves several steps. Firstly, the data required 

for the training of the proposed neural network was generated 

through high-fidelity finite element analysis (FEA) 

simulations of the thermal runaway of LIBs under various 

thermal operational and abuse conditions. The simulations 

were performed using COMSOL Multiphysics software. 

Specifically, the main mechanism of thermal runaway is a 

chain reaction in which chemical decomposition of battery 

elements occurs depending on temperature, and to analyze 
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this, chemical reaction models and thermodynamic models 

must be repeatedly calculated. These calculated data 

consisted of the heating curve and the evolution of the 

temperature of a LIB and dimensionless concentration of 

dominant components of the LIB including an anode, cathode, 

electrolyte, and solid electrolyte interphase. Next, the 

generated data was pre-processed to ensure its quality and 

consistency. The pre-processing steps included normalization, 

and splitting of the data into train, validation, and test sets. 

After data generation and preprocessing, the proposed MPI-

DeepONet architecture consists of a deep operator network 

that is supervised by using ordinary and partial differential 

equations. Specifically, the network comprises five hidden 

layers situated between the input and output layers. A 

hyperbolic tangent function serves as the activation function 

for the input and hidden layers, while the output layer 

employs a sigmoid function. Furthermore, the chemical 

degradation of the dominant four components was modeled 

using the Arrhenius equation. Additionally, to elucidate the 

thermodynamics underlying the thermal runaway 

phenomenon, the energy balance equation was employed as 

follows:  

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= ∇𝑘∇𝑇 +  �̇�𝑒𝑥𝑜, (1) 

where 𝜌, 𝑐𝑝 , T, 𝑡, 𝑘 and �̇�𝑒𝑥𝑜  denote the cell density, heat 

capacity, temperature, time, thermal conductivity coefficient 

and chemical heat generation, respectively. The neural 

network is trained to predict the evolution of temperature and 

dimensionless concentration of dominant components of a 

LIB, given the heating curve. Then, the proposed neural 

network is trained using the pre-processed data generated 

from FEA simulations. The training is performed using 

stochastic gradient descent optimization with 

backpropagation. The trained neural network is validated 

using actual measurements and other scenarios that are 

different from the training data. Finally, the performance of 

the proposed MPI-DeepONet is evaluated by comparing it 

with purely data-driven DeepONet in terms of accuracy and 

robustness. The accuracy is measured using root mean 

squared error metrics, while the robustness is evaluated by 

testing the neural network on scenarios that are different from 

the training data. 

 

2. RESULT AND DISCUSSION 

The proposed MPI-DeepONet was trained and evaluated 

using the data generated from high-fidelity FEA simulations 

of the thermal runaway of LIBs under various thermal 

operational and abuse conditions. The performance of the 

proposed neural network was compared with that of a purely 

data-driven DeepONet. The results of the evaluation are 

discussed below. 

The performance of the proposed MPI-DeepONet was 

evaluated by measuring its accuracy and robustness. The 

accuracy was measured using the root mean squared error 

(RMSE) metrics. The RMSE values for temperature and 

dimensionless concentration of dominant components of a 

LIB are shown in Table 1. The RMSE values for temperature 

and dimensionless concentrations of the dominant 

components of the LIB for DeepONet were found to be 

10.25 °C, 0.058, 0.038, 0.057, and 0.008, respectively. On the 

other hand, the MPI-DeepONet achieved better performance 

with RMSE values of 7.54 °C, 0.047, 0.031, 0.036, and 0.006 

for temperature and dimensionless concentrations of the 

anode, cathode, electrolyte, and solid electrolyte interphase, 

respectively. These results indicate that the proposed MPI-

DeepONet achieved lower RMSE values than the DeepONet, 

indicating that the proposed neural network has higher 

accuracy than the DeepONet. In Figure 1, the predicted 

values of temperature and dimensionless concentrations of 

anode and cathode by both DeepONet and MPI-DeepONet 

are shown. It can be observed that the MPI-DeepONet 

predictions are closer to the simulation results, indicating 

better performance than DeepONet. This can also be 

confirmed by the RMSE values of the test dataset, where 

MPI-DeepONet achieved lower values than DeepONet for all 

variables. Overall, the results suggest that MPI-DeepONet 

can be a promising approach for predicting the behavior of 

LIBs. 

 

Table 1. RMSE values of test dataset for temperature 

and dimensionless concentrations 

 

 
Temp. 

[ °C] 
Cpe Cne Ce Csei 

DeepONet 10.25 0.058 0.038 0.057 0.008 

MPI-DeepONet 7.54 0.047 0.031 0.036 0.006 
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Figure 1. Comparison of thermal runaway prediction results 

from DeepONet and MPI-DeepONet test data 

 

The proposed MPI-DeepONet was also tested on scenarios 

that are different from the training data to evaluate its 

robustness. Specifically, the predicted results are for an 

extrapolation of the heating target temperature to 260 °C, 

considering that the maximum heating target temperature of 

the training data was 240 °C. The results of the robustness 

evaluation are shown in Table 2. The RMSE values for 

temperature and dimensionless concentrations using 

DeepONet are 23.41 °C, 0.126, 0.021, 0.143, and 0.017, 

while those using MPI-DeepONet are 20.22 °C, 0.094, 0.064, 

0.122, and 0.013, indicating better performance by MPI-

DeepONet. Additionally, in Figure 2 showing the 

temperature prediction results using DeepONet and MPI-

DeepONet, it is clear that MPI-DeepONet performs better, 

confirming its superior performance. 

 

 

Figure 2. Comparison of thermal runaway prediction results 

from DeepONet and MPI-DeepONet test data for scenarios 

other than training data 

 

The proposed MPI-DeepONet is a multiphysics-informed 

neural network that is capable of predicting the thermal 

runaway of LIBs under various thermal operational and abuse 

conditions. The proposed neural network was supervised by 

using ordinary and partial differential equations, which 

govern highly complex and nonlinear phenomena of thermal 

runaway of a LIB, including the chemical reaction 

degradation of the dominant four components and 

thermodynamics. The proposed neural network achieved 

higher accuracy and robustness than the DeepONet. The 

proposed surrogate model can be used to develop a digital 

twin model of a LIB, which can be deployed on a battery 

thermal management system and provides sufficient 

information for effective power and energy management. In 

summary, the proposed MPI-DeepONet provides faster than 

FEA simulations and more accurate than purely data-driven 

DeepONet for predicting the thermal runaway of LIBs under 

various thermal operational and abuse conditions. The 

proposed model can be used to develop a digital twin model 

of a LIB, which can be used to optimize the power and energy 

management of LIBs. 

 

Table 2. RMSE values of scenarios other than training 

data for temperature and dimensionless concentrations 

 

 
Temp. 

[ °C] 
Cpe Cne Ce Csei 

DeepONet 23.41 0.126 0.021 0.143 0.017 

MPI-DeepONet 20.22 0.094 0.064 0.122 0.013 
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3. CONCLUSIONS 

In conclusion, this study the proposed MPI-DeepONet to 

predict the thermal runaway of lithium-ion batteries under a 

variety of thermal operational and abuse conditions. The 

proposed method has two key characteristics: it is supervised 

by using ordinary and partial differential equations, and it is 

trained using data generated from high-fidelity finite element 

analysis simulations of the thermal runaway of LIBs. The 

results showed that the MPI-DeepONet outperformed the 

purely data-driven DeepONet in terms of accuracy and 

robustness. The proposed surrogate model provides an 

efficient and accurate way to predict the evolution of 

temperature and dimensionless concentration of dominant 

components of a LIB, given the heating curve. Given that 

these predictions were corroborated through comparison with 

FEM results, the subsequent step in future research involves 

conducting actual experiments to further validate and 

compare accuracy. The proposed MPI-DeepONet has the 

potential to significantly improve the safety and reliability of 

LIBs by predicting thermal runaways under various thermal 

operational and abuse conditions. It can also contribute to the 

development of efficient battery thermal management 

systems that can improve the power and energy efficiency of 

LIBs. Future research can explore the integration of the 

proposed model with other models to enhance the accuracy 

and robustness of the predictions. Additionally, the proposed 

model can be extended to other types of batteries and energy 

storage systems for a wide range of applications. 
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