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ABSTRACT 

Although recent DNN-based methods have improved the 

performance of anomalous sound detection systems, it is 

still difficult to deploy a system in a real environment with-

out performance degradation. This is often due to measure-

ment flaws such as sensor variability, poor setup, or envi-

ronmental noise. Since such adverse effects are difficult to 

model by machine learning, a practical approach to this is-

sue is for humans to identify such flaws and correct them. 

To this end, we propose a method to visualize measurement 

flaws as a heatmap based on the distance matrix of the sam-

ples in the dataset. This method is designed to find unex-

pected flaws in the measurement process. Using this method, 

we were able to identify measurement flaws of anomalous 

sound detection systems in real production lines. The ro-

bustness of anomalous sound detection can be improved by 

correcting the flaws found by our method. 

1. INTRODUCTION 

Quality inspection is a crucial process in a production line. 

For mechanical components like motors or actuators, quality 

inspections often involve human evaluation of their operat-

ing sound or vibration. There have been long-standing ef-

forts to automate this human inspection with sensors like 

microphones or vibration sensors. Approaches for automat-

ing inspection tasks with these sensors range from simple 

methods based on thresholds for sensor signals to more ad-

vanced methods employing machine learning [1–4]. 

In recent years, researchers have introduced deep learning-

based methods for these inspection tasks, reporting in-

creased accuracy for various types of machines [5–9]. How-

ever, deploying inspection systems in field environments 

often leads to subpar performance, even with deep learning-

based methods. This is mainly due to measurement flaws 

such as individual sensor differences, improper measure-

ment procedures, inadequate instrument settings, or unfore-

seen environmental variations. 

While recent research has proposed machine learning mod-

els that are robust to various data variations [10–13], these 

measurement flaws cannot be modeled even by such recent 

methods due to their high uncertainty. In fact, no mention of 

these measurement flaws is found in the preceding studies. 

A more practical approach to enhancing the real-world ro-

bustness of inspection systems is for humans to identify 

such measurement flaws and correct them. To achieve this, 

we believe it is necessary to have an analytical method to 

identify measurement flaws from the dataset. 

To this end, our study aims to explore ways to visualize and 

quantify the measurement flaws that have an adverse effect, 

particularly for anomalous sound (vibration) detection tasks. 

In this paper, we propose a method for visualization and 

quantification based on distance matrices from sample data. 

This method is specifically designed to find unexpected 

flaws in the measurement process by considering additional 

labels that are expected to be unrelated to the inspection 

results. The effectiveness of the proposed method on real 

measurement datasets is reported through several case stud-

ies, in which a variety of mechanical components are in-

spected with anomalous sound (vibration) detection systems. 

Moreover, we will present an instance where the visualiza-

tion obtained from the proposed method enabled to refine 

the inspection process and resulted in an improved accuracy. 

2. RERATED WORKS 

Machine learning model studies often neglect to mention 

techniques for identifying adverse effects in the measure-

ment process. We conducted a search for such techniques 

and discovered numerous relevant studies within the medi-

cal and biotech research fields. In these fields, adverse ef-

fects during the measurement process are termed “batch 

effects,” and methods for detecting and correcting these 

effects are investigated. 

To visualize batch effects, researchers in these fields com-

monly use multivariate analysis such as principal compo-

nent analysis (PCA) and linear discriminant analysis (LDA) 

[14–17]. These techniques are indeed effective. They can be 

partially helpful also in uncovering measurement flaws 

when inspecting mechanical components. However, several 

issues arise when applying these methods to such inspection 
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tasks. First, while these techniques excel at revealing the 

internal structure of a dataset, they do not necessarily ex-

pose negative external effects. The internal structure of a 

dataset encompasses aspects such as the number of clusters 

and the distances between them. This information is valua-

ble for estimating the difficulty of a task, but often insuffi-

cient for pinpointing measurement flaws. Second, it is hard 

to predict how outliers will appear in these methods. Outli-

ers provide crucial information for identifying measurement 

flaws, but if the dominant variance in the entire dataset and 

the position vectors of outliers are orthogonal in the feature 

space, these methods might not reveal the outliers. 

Regarding quantification of batch effects, methods like sur-

rogate variable analysis (SVA) [18, 19] and guided PCA 

(gPCA) [20, 21] have been proposed. However, while SVA 

is suitable for detecting unknown sources of variation, it is 

not very useful for improving the measurement process be-

cause it cannot quantify the magnitude of the adverse effect 

of a given known factor. For instance, it is difficult to know 

whether sensor variability or environmental variability is 

more dominant. In contrast, gPCA can quantify adverse 

effects of given factors, but it requires many batches to pro-

duce reliable results. For instance, a statistically enough 

sensors are necessary to quantify the negative effect from 

the variation of the sensors, but many machine inspection 

tasks employ only a few sensors. 

In this study, we introduce a novel method that addresses 

the problems above and enables both visualization and 

quantification of measurement flaws. 

3. PROPOSED METHOD 

3.1. Definition of Terms 

In this subsection, definitions for the terms used in the sub-

sequent descriptions are provided. 

Main- and Sub-label 

A label signifies a specific factor. For instance, the quality 

of an object being inspected can be considered a label. Its 

value is typically good or bad, or a numerical value that 

indicates the degree of abnormality. A main-label represents 

a factor to be determined during the inspection task. It gen-

erally corresponds to the quality (e.g., good or bad) of the 

inspected object. On the other hand, a sub-label represents a 

factor that is expected to be unrelated to the main-label. For 

example, a date and time of the measurement, an ID of the 

sensor used for the measurement, an ID of the person who 

took the measurement can be sub-labels. A well measured 

dataset is one in which the main-label has a clear impact 

while the sub-labels have a small impact. 

Sample 

A sample refers to a single segment of sound or vibration 

waveform data. For instance, a single WAV file containing 

the sound of a motor running for several seconds corre-

sponds to one sample. Each individual sample is assigned a 

single main-label and multiple sub-labels. 

Dataset 

A dataset comprises numerous samples and their associated 

main- and sub-labels. 

Distance 

A distance is a similarity value calculated in a certain man-

ner between two samples. In this paper, to compute the dis-

tances, we first extracted a series of filter bank feature vec-

tors from the signal waveform of each sample under the 

conditions outlined in Table 1. Next, we fitted a Gaussian 

distribution to the series of the feature vectors for each sam-

ple. Consequently, a single sample is represented by a single 

Gaussian distribution. We quantified the distance between 

two samples by calculating the Bhattacharyya distance be-

tween their distributions. The Bhattacharyya distance is of-

ten used to measure the divergence between distributions 

[22, 23]. This distance measure exhibits symmetry and is 

zero for identical distributions. 

3.2. Visualization 

First, suppose the dataset comprises 𝑁  samples 𝑠1 … 𝑠𝑁 , 

which will be sorted according to a specific rule. Let 𝑝𝑛 

represents the 𝑛-th sample resulting from this sorting. An 

𝑁×𝑁 matrix 𝐌 is constructed such that the element at the 

row 𝑟  and the column 𝑐  is equal to 𝑑(𝑝𝑟 , 𝑝𝑐) , where 

𝑑(𝑝𝑟 , 𝑝𝑐)  represents the distance between 𝑝𝑟  and 𝑝𝑐 . The 

matrix 𝐌 serves as the distance matrix for the entire dataset. 

If the distances exhibit symmetry, 𝐌 becomes a symmetric 

matrix. Additionally, if the distance between identical sam-

ples is zero, the diagonal components of 𝐌 will be zero. 

Next, the 𝑁 samples are sorted according to a label corre-

sponding to a factor to be visualized. Suppose, for example, 

there are three sensors: A, B, and C. If the individual differ-

ences between them are to be visualized, the samples are 

sorted in the order of the corresponding sub-label, the IDs of 

the individual sensors. As a result, the matrix 𝐌 will consist 

of a 3×3 block matrix separated by the sensor IDs as shown 

in Fig. 1. The visualization of the factor is done by display-

ing the resulting matrix 𝐌 as a heatmap. 

Table 1. The conditions of the filter bank analysis to 

extract feature vectors from signal waveforms. 

 
Sample rate Depends on the dataset 

Frame length 1024 

Frame shift 512 

Window function Hann 

Band-pass filters 
Equally spaced overlapping 

triangular filters 

Dimension of vectors 17 
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Fig. 2 (a) shows an example of a case where there is little 

variation among the three sensors. In this case, each compo-

nent of the 3×3 block matrix separated by the sensor IDs has 

a similar range of values. Thus, no special pattern appears in 

the heatmap. Fig. 2 (b), on the other hand, shows an exam-

ple of a case where there is clear variation among the three 

sensors. In this case, the diagonal components of the 3×3 

block matrix have small average values because they consist 

of distances obtained from the same sensors. The off-

diagonal components have large values because they are 

composed of distances obtained from different sensors. As a 

result, a checkerboard-like pattern with the boundaries that 

match the 3×3 block matrix appears in the heatmap. Thus, 

the presence of a checkerboard pattern indicates that the 

factor has an impact on the dataset. In the absence of such a 

pattern, the factor has no or small impact. 

If the main-label has an impact on the data set, this is a good 

sign because the measurement process is capturing the dif-

ference between good and bad samples. If any of the sub-

labels have an impact, there may be unexpected flaws in the 

measurement process. 

The above is the visualization procedure for a single label. If 

there are more than two labels to be considered, there are 

several ways to arrange them. One way is to set a priority 

for each label. In this way, the samples are first sorted by 

the label with the highest propriety. Samples that are in the 

same order are sorted by the label with the next highest pro-

priety. We used this method for the visualization examples 

shown in the following section. Another way is to sort the 

samples by the single label to be visualized, while samples 

that are in the same order are sorted randomly. 

3.3. Quantification 

The visualization method above can be interpreted as fol-

lows: if a dataset can be classified by a certain label, then 

that label has an impact on the dataset. With this idea, the 

visualization method above can be used to quantify the 

magnitude of the adverse effects of certain factors. 

There are several ways for quantification. In this paper, we 

use the difference between the average distance of the entire 

dataset and the average distance within certain clusters, with 

reference to LDA. When a distance matrix is generated for a 

label 𝐿 as described above, the average distance of the diag-

onal components of the block matrix can be interpreted as 

the within-class variance 𝑉𝑖𝑛𝑡𝑟𝑎(𝐿). Similarly, the average 

distance of the off-diagonal components can be interpreted 

as the between-class variance 𝑉𝑖𝑛𝑡𝑒𝑟(𝐿). The difference of 

these values can be expected to represent the possibility of 

classification like the score function of LDA. We therefore 

quantify the impact of the factor corresponding to the label 

𝐿 with the following formula: 

 𝐸(𝐿) = 𝑉𝑖𝑛𝑡𝑒𝑟(𝐿) − 𝑉𝑖𝑛𝑡𝑟𝑎(𝐿) (1) 

The higher this value, the greater the impact of the corre-

sponding factor on the data set. This value allows the mag-

nitude of the adverse effect of each factor to be compared. 

If impact of a given sub-label is greater than that of the 

main-label, the inspection task will not go well. In this case, 

the measurement procedure must be corrected to reduce the 

effect of such a problematic factor. 

4. CASE STUDIES 

In this section, we report some of the results of our proposed 

method as applied to several datasets from real production 

lines. Details of the datasets presented below are shown in 

Table 2. 

Table 2. The details of the datasets. 

 

# Target 
Number 
of 
samples 

Sample 

rate 

Duration 
of 
a sample 

1 
Actuator for 

door mirror 

669 in total 
654 good samples, 

15 bad samples 

40000 Hz 2.3 sec 

2 Fishing reel 
280 in total 
150 good samples, 

130 bad samples 
40000 Hz 5.5 sec 

3 
Actuator for 
air conditioner 

1088 in total 
1021 good samples, 

67 bad samples 
25000 Hz 4.4 sec 

 
 

 

 
 

Figure 1. An example distance matrix separated by the 

sub-label (A, B, and C). 

 
 

 
(a) 

 
(b) 

 

Figure 2. Tendencies of distance values in the distance 

matrix. 

 
 

A B C

A

B

C

Distance matrix

A B C

A

B

C

Similar tendency

A B C

A

B

C

Small
values

Small
values

Small
values

Large
values

Large
values



Asia Pacific Conference of the Prognostics and Health Management Society 2023 

4 

4.1. Actuator for door mirror (dataset #1) 

First, a heatmap obtained from a relatively well measured 

dataset #1 is shown in Fig. 3. This dataset was obtained by 

measuring the vibration of actuators with a vibration sensor. 

In this heatmap, the samples are ordered first by the main 

label (good or bad) and then by the sub-label corresponding 

to the date of recording. Regarding the colors in the heatmap, 

white represents zero. The distance increases as the color 

approaches black. 

The region on the heatmap separated by the main-label is 

colored close to white for the region of “good” and close to 

black for the region of “bad” (note that the narrow areas on 

the right and bottom are the “bad” areas). This is a good 

sign, since it implies that the main-label has a large impact 

on the dataset. On the other hand, each region separated by 

the sub-label (the date recorded) has a diluted checkerboard 

pattern, which might be a bad sign. 

Overall, however, the main-label has a stronger impact. 

Thus, the inspection system for these actuators showed a 

reasonably good performance. 

4.2. Fishing reel (dataset #2) 

Next, an example of a heatmap obtained from a relatively 

poorly measured dataset #2 is shown in Fig. 4. This dataset 

was obtained by measuring the vibration of fishing reels 

with a vibration sensor. In this heatmap, the samples are 

ordered by the main-label (good or bad). 

In this case, we can see that the inspection task will be diffi-

cult because the boundaries of the main-label do not form a 

clear checkerboard pattern. To achieve high inspection ac-

curacy for this dataset, a model capable of complex model-

ing, such as a Gaussian mixture model or a neural network, 

was needed. Furthermore, even with a well-tuned model that 

could handle the complexity, it was difficult to achieve 

practical accuracy. 

It is also noteworthy that the outliers in the dataset are rep-

resented as straight lines in the heatmap. Methods such as 

PCA do not always visualize outliers, but our method is 

better in terms of outlier detection because it can always 

visualize outliers. 

From this, we learned that the measurement setup for this 

task needed to be reviewed, such as where to mount the sen-

sor on the object or how to secure the object. 

4.3. Actuator for air conditioner (dataset #3) 

Fig. 5 shows a heatmap for a dataset where the measurement 

failed completely. This dataset was obtained by measuring 

the vibration of fishing reels with a vibration sensor. The 

samples are ordered first by the main-label and then by the 

sub-labels: the date recorded, the rotation direction of the 

actuator, and the individual fixture used to secure the object. 

 
 

Figure 3. The heatmap obtained from the dataset #1. 

 
 

 
 

Figure 4. The heatmap obtained from the dataset #2. The 

allows on the right and bottom sides of the heatmap in-

dicate outliers. 
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Figure 5. The heatmap obtained from the dataset #3. 
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The heatmap in Fig. 5 shows a clear checkerboard pattern 

for the sub-labels, indicating a significant negative impact 

on the measurement. In addition, there is no clear difference 

between the regions for good and bad samples. In fact, no 

machine learning models worked at all on this dataset. 

Fig. 6 shows quantification results of the factors corre-

sponding to the sub-labels available in the dataset. These 

values were obtained with the proposed method described in 

the section 3. They indicate how much the factors affect the 

dataset. This figure shows that all the factors other than the 

main-label (good or bad) have more impact than the main-

label. Thus, the inspection task will not go well. The indi-

vidual differences in the fixtures used to secure the inspec-

tion target have a particularly large impact. Therefore, to 

improve this situation, it is necessary to first address the 

individual differences in the fixtures. 

4.4. Creation of a user interface 

From the case studies above, we concluded that the pro-

posed method is effective in finding measurement flaws. 

To make the method usable by non-experts, we created a 

user interface that automatically performs these visualiza-

tions and quantifications. This interface allows users to easi-

ly generate heatmaps and bar-charts of the quantification 

results from the dataset. Fig 7 shows the schematic diagram 

of the interface. Using this interface, the user can specify 

how the samples are sorted by the priorities of the labels. In 

this section, we report the usefulness of the interface to im-

prove the accuracy of inspection tasks. 

A non-expert user obtained a heatmap shown in Fig. 7 using 

the interface. The user’s dataset consists of vibration signal 

samples of another type of actuators for air conditioner. The 

dataset contains 30 samples in total, 20 good samples, and 

10 bad samples. These samples were measured with two 

different vibration sensors. 

At first, the inspection system for the actuators with a ma-

chine learning model did not work well. The user thereby 

checked the heatmap and found that the heatmap shows a 

large variability between the two sensors. To address this 

variability, the user trained two distinct models for each 

sensor. With these models, the accuracy of the task im-

proved enough to replace the human evaluation. 

5. DISCUSSION 

In the preceding sections, we have been able to demonstrate 

the effectiveness of our proposed method. In all cases, our 

method provided useful information for improving the 

measurement process on the datasets where machine learn-

ing models could not achieve satisfactory performance. 

Normally, this type of information cannot be obtained from 

2D scatter plots visualized with conventional methods such 

as PCA or LDA. This is mainly because the data variance 

caused by measurement flaws is often buried within the 

overall data variance, making it difficult to detect visually. 

Moreover, unlike methods such as SVA, our proposed ap-

proach can quantify the extent to which specific factors af-

fect the measurement process. This makes it more useful for 

pinpointing the causes of performance degradation. Fur-

thermore, unlike gPCA, which requires a significant number 

of batches because it performs PCA based on the average 

vector of each batch, our proposed method provides reliable 

results even with a limited number of batches (e.g., only two 

batches: good and bad). This is because our method calcu-

lates statistical measures from the many samples within 

each batch. This avoids the need for a large number of 

batches. 

However, in the dataset #2, although several outliers were 

visualized as measurement flaws, the reasons for these out-

liers remain unclear. This is due to the lack of assigned sub-

labels in this case, leaving only main labels to use. To pre-

pare for such a situation, we believe that all applicable sub-

labels should be assigned as much as possible during data 

collection. 

6. CONCLUSION 

We proposed a method to visualize and quantify the meas-

urement flaws in anomalous sound detection tasks. Through 

several case studies, we confirmed the effectiveness of our 

 
 

Figure 7. The schematic diagram of the interface. The 

heatmap in the figure is from the vibration dataset of 

actuators for air conditioner. 
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Figure 6. The quantification results from the dataset #3. 
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proposed approach. Furthermore, we presented a case where 

the accuracy of anomalous detection system was improved 

with the proposed method. 
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