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ABSTRACT 

Recording and prediction of the accumulated damage, 

which will eventually lead to the failure of power electronic 

modules, is an aspect of high importance for power 

electronic systems design and, in particular, for 

development of Prognostic and Health Management (PHM) 

schemes for in-field applications. To this end, this paper 

presents a simple and cost-effective prognostic method for 

predicting the remaining useful life (RUL) of TO-247 

packaged silicon carbide (SiC) metal-oxide semiconductor 

field-effect transistors (MOSFETs) subjected to power 

cycling experiments. The model assumes that the major 

failure mode is bond-wire lift-off and uses a damage 

accumulation scheme based on Paris’ crack law. The only 

inputs to the model are historical data on the average 

junction temperature swing and the temperature-

compensated drain-source ON-state resistance at the peak 

temperature of the current cycle. Using only these two input 

values, the model is shown to predict RUL with surprising 

accuracy for the range of constant current loads determining 

cycling conditions under which the test data series have 

been acquired. This work is a first step in an ongoing project 

towards building more elaborate prognostic schemes for 

RUL-determination of SiC power MOSFETs in actual 

working conditions, using physics-informed neural 

networks (PINNs). 

1. BACKGROUND 

Power electronic systems and components play an 

increasingly important role in upholding many basic 

functions that we take for granted in our everyday lives. 

They provide compact and efficient solutions to power 

conversion in applications such as utility interfaces with 

energy resources, energy storage systems, unified power 

quality correction, and electric or hybrid electric vehicles. 

Most power electronic systems, however, are not equipped 

with redundancy. In consequence, any fault that occurs to 

the components will inevitably result in a shutdown of the 

entire system. Such unscheduled interruptions not only 

cause significant safety concerns – particularly in health 

care, aerospace, and automotive applications – but also 

increase the operational costs – for example in off-shore 

wind farms and other power production applications. 

In general, system failures are hardly ever completely 

preventable. For this reason, the preferred approach is to act 

before a failure occurs, and models for prediction of 

remaining useful life, if applied appropriately, can fulfill 

this task. To achieve this, the development of device-

specific models for RUL estimation is required. Empirical 

or semi-empirical approaches, often based on Arrhenius 

type expressions, have traditionally been employed to 

estimate the expected lifetime of components. Such models 

have been shown to accurately forecast the average failure 

rates for a large sets of devices over broad ranges of 

physical conditions (Bayerer et al., 2008; Hanif et al., 2019). 

However, when applied to single devices, the predictive 

capabilities of such models are typically very limited and 

subject to large errors. In contrast, prognosticating models 

based on Machine Learning (ML) algorithms have been 

demonstrated to be able to estimate RUL for single devices 

with great accuracy (Söderkvist Vermelin et al., 2023). A 

big drawback associated with ML-based methods is that the 
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variables and relationships resulting from the training don't 

allow for obtaining a straightforward interpretation. 

Furthermore, if an ML-based algorithm is faced with data 

collected under operational conditions that differ 

significantly from those of the dataset used for training the 

algorithm, the performance deteriorates (Hendrycks et al., 

2021; Lakshminarayanan et al., 2017; Söderkvist Vermelin 

et al., 2023). A possible solution for overcoming this 

problem is to use physics informed ML models, where a 

model based on Physics-of-Failure (PoF) sets certain 

constraints for the algorithm. Such a combination has the 

potential for yielding accurate RUL predictions on a device 

level, while still maintaining the ability to extrapolate 

outside the training conditions. 

The most vulnerable elements in power electronic systems 

are the power semiconductor devices and electrolytic 

capacitors (Song & Wang, 2013). These components are 

built up of layers of materials characterized by different 

coefficients of thermal expansion (CTE), which, in turn, 

leads to thermo-mechanical stress arising between adjacent 

layers due to temperature variations over time. This thermo-

mechanical stress is the primary cause for the accumulation 

of damage. In the case of power MOSFETs the main failure 

mechanism is bond-wire lift-off which results from cracks 

in the interface between wire-bond and the metallization 

layer. Interestingly, Paris’ law (Paris & Erdogan, 1963) – a 

simple analytical expression for estimating crack 

propagation during cyclic loading – has been shown to be a 

good candidate for combining physical models with particle 

filters to predict RUL for bond-wires in Si-based insulated 

gate bipolar transistors (IGBTs) (Hu et al., 2020; Lu & 

Christou, 2019). This result inspired us to adopt such an 

approach for the development of a PINN-based RUL 

prediction scheme for SiC MOSFETs, which is the topic of 

this work. As a first step towards this, we here present a 

simple RUL prediction scheme with three fitting parameters 

and apply this to a set of data from power cycling 

experiments. 

 

Figure 1. The resulting parameters; 𝑇𝑚, ∆𝑇𝑗, and 𝑁𝑓 

acquired for the 25 DUTs in the study. 

 

2. EXPERIMENTAL 

In this study, we induced wire-bond degradation in 25 

silicon carbide (SiC) TO-247 packaged power MOSFETs 

using power cycling. The power cycling system used was 

from Hollander Research, and the SiC MOSFETs were 

being continuously thermally stabilized via a water-cooled 

mounting block. The power cycling was performed in three 

series, each corresponding to a different current load, as 

illustrated by Tab. 1. During the power cycling procedure, 

the drain-source ON-state voltage and a range of various 

temperatures were recorded. 

Please refer to a joint paper submitted to ESREL2023 for 

more details (Söderkvist Vermelin et al., 2023). In the 

present work, the temperature measured at the drain leg will 

be used as an approximation of the junction temperature, 𝑇𝑗. 

This temperature was measured every 90 cycles leading to 

an estimation of the junction temperature swing, the 

difference between the temperature at the end of and at the 

beginning of the ON-state period in each cycle, ∆𝑇𝑗. Values 

for ∆𝑇𝑗 between each measurement were then estimated by 

linear interpolation. 

The different loading levels and positions on the mounting 

block, as well as variations in device quality, resulted in a 

range of mean drain leg temperatures (𝑇𝑚) and ∆𝑇𝑗 for each 

device under test (DUT). The power cycling was carried out 

until all devices in each run failed, with the failure criterion 

being defined by a change in temperature-compensated 

drain-source ON-state resistance exceeding 5%. As a result, 

the total number of cycles till failure (𝑁𝑓) together with run-

to-failure trajectories were obtained for each DUT. The 

resulting key parameters are compiled in Fig. 1. The devices 

were numbered between 1 and 25 in order of increasing 𝑇𝑚. 

The temperature-compensated difference in ON-state 

resistance ( ∆𝑅𝐷𝑆,𝑜𝑛 ) was derived using the temperature 

measured on the mounting block (𝑇𝑏) as follows: First, a 

device-specific dependence of the ON-state resistance  

(𝑅𝐷𝑆,𝑜𝑛)  on 𝑇𝑏  was determined for each DUT based on data 

from the initial 200 cycles. This function essentially 

describes how 𝑅𝐷𝑆,𝑜𝑛  should vary with temperature for an 

undegraded (“healthy”) device. Second, the actual 𝑅𝐷𝑆,𝑜𝑛 

and corresponding 𝑇𝑏  at the end of the current pulse were 

collected for all cycles. Note that this resistance contains 

Table 1. Power cycling parameters for the different runs 

in this study. 

 

Run 
Number 

of DUTs 
Set current [A] 

Measured current 

[A] 

1 10 23 22.9 

2 10 24 23.7 

3 5 26 25.7 
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information about how degradation of a device progresses 

with its power cycling. Next, using the collected  𝑇𝑏  and the 

device-specific dependence of resistance on temperature 

mentioned above, the hypothetical “healthy” 𝑅𝐷𝑆,𝑜𝑛  was 

calculated for all cycles. Finally, ∆𝑅𝐷𝑆,𝑜𝑛  was obtained as 

the difference between the measured 𝑅𝐷𝑆,𝑜𝑛  and the value 

expected from a "healthy" device. 

Data handling and simulations were performed in Python 

(Van Rossum & Drake, 2009) where the optimizations of 

the various parameters described in the model below were 

performed using the using the optimize.minimize 

module implemented in the SciPy package (Virtanen et al., 

2020). 

3. THE MODEL 

As described above, the model considered in this paper 

assumes that bond-wire lift-off is the dominant failure 

mechanism, which is caused by the propagation of a crack 

in the wire “footprint” right at the interface between the 

bond-wire and the metallization layer. For Si IGBTs, this 

mechanism has been shown to take place simultaneously 

from both sides in a symmetrical manner, as is illustrated in 

Fig. 2 (Dornic et al., 2018, 2020).  

The process of crack growth under cyclic loading can in 

general be divided into three phases: crack initiation, crack 

propagation, and structural fracture, as schematically 

illustrated in Fig. 3 (Benguediab et al., 2012). The first stage 

presents a threshold below which there is no crack growth. 

In the second stage, the crack growth rate increases 

exponentially with respect to the number of cycles (see the 

linear region in Fig. 3) and in the final stage the system 

reaches the unstable state in which the structure fails within 

a small number of cycles. 

 

  
Figure 2. An illustration of a crack, of length 𝑎, propagating 

above the interface between the wire and the metallization 

layer in a wire-bond with a footprint of length 2𝑏. 

 

 

Figure 3. The three stages of crack growth; initiation, 

propagation, and fracture. 

 

When modelling crack propagation in wire-bonds, the first 

stage is commonly assumed to be of minor importance, 

whereas failure during the last stage is so rapid that the RUL 

is in practice close to zero once this is reached. 

Consequently, the lifetime of the bond-wire can be regarded 

as the lifetime of the propagating crack, which is described 

by Paris’ law: 

 
𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 (1) 

Here, 𝑎 is the crack length, 𝑁 represents the cycle number, 

∆𝐾 stands for the effective stress intensity range, while 𝐶 

and 𝑚  are material constants. In general, ∆𝐾  depends on 

factors such as: localized geometry, current crack length, 

material and environmental parameters, as well as cyclic 

stress, and it can be approximated as follows: (Tada et al., 

2000). 

 ∆𝐾 = ∆𝜎√𝜋𝑎 ∙ 𝑓(𝑎 𝑏⁄ ) (2) 

where ∆𝜎 represents the effective stress range and 𝑓(𝑎 𝑏⁄ ) 

is a function depending on 𝑎 and, in the present case half, 

the width of the sample ( 𝑏 ). Note that ∆𝜎  is primarily 

governed by the CTE mismatch between SiC and the bond- 

wire, and thus by ∆𝑇𝑗 . In consequence, for a given device, 

∆𝐾 is therefore determined by of ∆𝑇𝑗 and 𝑎: 

 ∆𝐾 = 𝑔(∆𝑇𝑗) ∙ √𝜋𝑎 ∙ 𝑓(𝑎 𝑏⁄ ) (3) 

The function, 𝑓(𝑎 𝑏⁄ ), has been determined experimentally 

for various crack propagation scenarios (Tada et al., 2000). 

In the case of double edge notch test specimens, which is 

most like the conditions illustrated in Fig. 2, the function 

under discussion can with good accuracy be approximated 

as: 
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𝑓(𝑎 𝑏⁄ ) = 

=
𝑒1 − 𝑒2

𝑎
𝑏

− 𝑒3 (
𝑎
𝑏

)
2

+ 𝑒4 (
𝑎
𝑏

)
3

− 𝑒5 (
𝑎
𝑏

)
4

√1 −
𝑎
𝑏

  
(4) 

where the phenomenological constants, from 𝑒1  to 𝑒5 , are 

1.122, 0.56, 0.205, 0.471, and 0.19, respectively, and 𝑏 is 

half of the total width of the specimen, which in the present 

scenario corresponds to the bond-wire “footprint” (see Fig. 

2). On the other hand, for the function 𝑔 a simple power 

dependence on ∆𝑇𝑗 was tested and proved to be compatible 

with physically reasonable values for 𝐶 and 𝑚: 

 𝑔(∆𝑇𝑗) = 𝑐∆𝑇𝑗
𝑑 (5) 

where 𝑐  and 𝑑  are fitting parameters. Using the equations 

introduced above, Paris’ law can be reformulated into a 

discrete form representing a cumulative damage model that 

describes the crack length after 𝑁 cycles (where 𝑐√𝜋 have 

been incorporated into 𝐶): 

 𝑎𝑁 = 𝑎𝑁−1 + 𝐶 (∆𝑇𝑗
𝑑 ∙ √𝑎𝑁−1 ∙ 𝑓(𝑎𝑁−1 𝑏⁄ ))

𝑚

 (6) 

Optimization of the parameters 𝐶, 𝑚, and 𝑑, to give the best 

fit of Eq. 6 to the experimental data was performed in the 

following manner: 𝑎𝑁  was calculated, starting with values 

for the parameters inspired by literature (Hanif et al., 2019; 

Paris & Erdogan, 1963) and using a value of the initial crack 

length (𝑎0) of 0.02 mm. This procedure was repeated for 

each DUT until either 𝑎𝑁+1 ≥ 𝑏 or 𝑁 + 1 > 𝑁𝑓. The sum of 

the errors, 𝑁 − 𝑁𝑓   and 𝑎𝑁 − 𝑏 , for all DUTs were then 

minimized which resulted in the fit shown in Fig. 4. 

 

 

Figure 4. A visualization of the resulting errors after 

optimizing the parameters 𝐶, 𝑑, and 𝑚, in Eq. 6 to match 

the experimental values 𝑁𝑓 and 𝑏. 

 

The values of parameters 𝐶, 𝑑, and 𝑚, obtained by means of 

the optimization procedure, are 8.4810-17, 2.12, and 3.27, 

respectively. Importantly, the value derived for 𝑚  falls in 

the range between 3 and 4 commonly observed for 

aluminium alloys (Benguediab et al., 2012; Paris & 

Erdogan, 1963; Sasaki et al., 2008). 

Since there is no direct way to measure the crack length 

when a DUT is in operation, the next step is to identify a 

suitable parameter that can give an experimental estimate of 

the accumulated damage. The temperature-compensated 

ON-state voltage, at constant current load, has previously 

been identified as a suitable candidate (Degrenne & Mollov, 

2018; Hanif et al., 2019; Hu et al., 2020). Because the data 

set used in this work is the result of power cycling at 

different currents, the temperature-compensated drain-

source ON-state resistance, 𝑅𝐷𝑆,𝑜𝑛, measured at the end of 

each cycle will be instead employed as a damage indicator. 

The dependence of 𝑅𝐷𝑆,𝑜𝑛 on 𝑎𝑁  is given by (Degrenne & 

Mollov, 2018): 

 (𝑅𝐷𝑆,𝑜𝑛)
𝑁

= 𝑟0 +
𝑟1

1 − 𝑟𝑎 ∙ 𝑎𝑁

 (7) 

where 𝑟0, 𝑟1, and 𝑟𝑎 are DUT-specific parameters. Thus, the 

change in 𝑅𝐷𝑆,𝑜𝑛 at cycle 𝑁 relative to an undamaged DUT 

can be described by: 

 (∆𝑅𝐷𝑆,𝑜𝑛)
𝑁

=
𝑟1

1 − 𝑟𝑎 ∙ 𝑎𝑁

− 𝑟1 (8) 

Finally, by combining Eqs. 6 and 8, estimates of the 

parameters 𝑟𝑎  and 𝑟1  for each DUT, can be derived in the 

following manner. Firstly, DUT-specific crack propagation 

trajectories were generated. This was achieved by using the 

same optimization procedure as described above except that 

the parameters 𝐶, 𝑚, and 𝑑, were kept constant while fitting 

a DUT-specific 𝑎0. This procedure resulted in DUT-specific 

values of 𝑎0 in the range of 0.02 ± 0.01. Secondly, the crack 

propagation trajectories, given by Eq. 6, were incorporated 

into Eq. 8, yielding the corresponding ON-state resistance 

change trajectories, (∆𝑅𝐷𝑆,𝑜𝑛,𝑓𝑖𝑡)
𝑁

. 
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Figure 5. The measured ∆𝑅𝐷𝑆,𝑜𝑛 as a function of cycle 

number and a fit of the device specific parameters 𝑎0, 𝑟𝑎, 

and 𝑟1  using Eqs. 6 and 8 for DUT #1. 

 

 

Figure 6. RUL estimation at cycle 𝑁, using the measured 

∆𝑅𝐷𝑆,𝑜𝑛 and ∆𝑇𝑗 and the pre-determined parameters (𝑑, 𝑚, 

and 𝐶) by fitting device specific parameters (𝑟𝑎, 𝑎0, and 𝑟1). 

 

The DUT-specific parameters 𝑟𝑎  and 𝑟1  were derived by 

minimizing the mean square error between the measured 

(experimental) and modelled trajectories. As a result, a set 

of individual fits were obtained, and an example fit for DUT 

#1 is shown in Fig. 5. The derived DUT-specific 𝑟𝑎 and 𝑟1 

values are in the range of 0.02 ± 0.005 and 1.6 ± 0.2, 

respectively. 

A complete toolset for estimating RUL on the go, using the 

measured ∆𝑇𝑗  and (∆𝑅𝐷𝑆,𝑜𝑛)
𝑁

, has now been derived. The 

proposed procedure is schematically illustrated in Fig. 6 and 

can be summarized as follows: Firstly, at any given cycle, 

the measured (∆𝑅𝐷𝑆,𝑜𝑛)
𝑁

 gives an experimental value for 

the crack length via a rearrangement of Eq. 8: 

 𝑎𝑒𝑥𝑝,𝑁 =
1

𝑟𝑎

(1 −
𝑟1

((∆𝑅𝐷𝑆,𝑜𝑛)
𝑁

+ 𝑟1)
) (9) 

 

Figure 7. RUL determination using the model for DUTs #1, 

#13, and #25 with 185 294, 29 255, and 6 614 cycles till 

failure, respectively. The shaded area represents the 

uncertainty of prediction using the LESiT model. 

 

Secondly, 𝑁 and the series of ∆𝑇𝑗 lead to a prediction of 𝑎𝑁 

via Eq. 6, using the pre-determined parameters 𝐶, 𝑑, and 𝑚. 

Starting with the mean values for 𝑟𝑎 , 𝑎0 , and 𝑟1  and then 

minimizing the error 𝑎𝑁 − 𝑎𝑒𝑥𝑝,𝑁 by varying the parameters 

within the previously determined ranges as bounds, result in 

new 𝑁 -specific values for the parameters. Using the 𝑁 -

specific 𝑎0 in Eq. 6 and iterating until the criterion 𝑎𝑁+1 ≥
𝑏 is met yields a prediction of the total number of cycles till 

failure, 𝑁𝑓,𝑓𝑖𝑡 . Finally, the RUL can be straightforwardly 

derived with the use of 𝑁𝑓,𝑓𝑖𝑡  (see Fig. 6). 

4. RESULTS 

To illustrate the RUL prediction capabilities of the simple 

model described above, three DUTs, that is, #1, #13, and 

#25, with lowest, middle, and highest 𝑇𝑚, respectively, were 

analyzed. Since the total number of cycles till failure differ 

significantly for the chosen devices: 185 294, 29 255, and 

6 614, the RUL was estimated every 1000, 200, and 50 

cycles for the three DUTs, respectively. The resulting 

estimated RULs plotted as a function of consumed life is 

shown in Fig. 7. As a comparison the data was also fitted to 

the LESiT model (Held et al., 1997), an Arrhenius-type 

model representing traditional lifetime  predictions. The fit 

resulted in a ± 50% uncertainty in the prediction of 𝑁𝑓 , 

leading to a span of RUL predictions illustrated by the 

shaded area in Fig. 7. 

5. CONCLUSION 

We have demonstrated that a simple model based on 

damage accumulation using Paris’ law for crack propagation 

is capable of predicting RUL for SiC power MOSFETs in 

constant load power cycling experiments to a good degree 

using only the junction temperature swing and temperature-
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compensated ON-state resistance. The model has been 

minimized in terms of data storage and parameters and is 

very computationally cheap. This is because it only involves 

the optimization of three parameters within quite narrow 

intervals. Consequently, it only requires the temperature-

compensated ON-state resistance of a “healthy” DUT, and 

the same for the power cycle of interest, along with the 

junction temperature swings to estimate the RUL of the 

current cycle. The use of the model outside the very regular 

periodic conditions of power cycling experiments, however, 

is expected to be very limited. To improve the model for 

more challenging conditions it will have to be refined with 

more flexibility. This can be done either by including cycle-

to-cycle interactions or by implementing it in PINNs where 

the parameter optimization procedure could be replaced 

with a neural network that can model complex functions. 

This would make the method more general and parameter 

estimations could be made from complex, multivariate 

sensor measurements where the underlying physical laws 

might not be known. 
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