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ABSTRACT

Intelligent fault diagnosis of motor is of tremendous signif-
icance to ensuring reliable industrial production, and deep
learning methods have gained notable achievements recently.
Most studies automatically extracted fault information from
raw monitoring signals with deep models, whereas the strong
periodic temporal information containing in the signals were
ignored. To tackle this limitation, a multi-periodicity and
multi-scale network is proposed in this paper. 1D monitoring
signals are transformed into 2D space with multiple various
periods, allowing for the straightforward reflection and mod-
eling of variations both within and between different periods.
Multi-scale learning is introduced to extract temporal infor-
mation from the multi-periodicity representations with multi-
ple scales in a parameter-efficient way. Experiments carried
out on a motor fault dataset verified the effectiveness of the
proposed method. The results demonstrate that over 99% di-
agnosis accuracy can be achieved with one-channel vibration
signals, and superior performance is obtained under diverse
noise conditions compared with other methods.

1. INTRODUCTION

As a key electromechanical device of many important indus-
trial equipment, motor has made a substantial contribution
to industrial production. Unforeseen faults are inevitable in
practical applications, and they may significantly diminish
equipment reliability and potentially lead to catastrophic con-
sequences (Xia, Huang, Tao, Liu, & Liu, 2023). Motor fault
diagnosis is a critical approach to facilitate timely mainte-
nance to ensure safe production and extensive methods have
been explored to enhance the diagnosis accuracy (Gangsar &
Tiwari, 2020).

Xia P. et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

With the rapid development of artificial intelligence (AI)
techniques, deep learning-based intelligent fault diagnosis
have shown great advancements (Lang et al., 2022). These
methods learn latent feature representations from raw mon-
itoring signals or time-frequency spectrum without manual
feature design and expertise knowledge, and accomplish fault
diagnosis task in an automatic and end-to-end way (Xia,
Huang, Wang, Zhong, & Liu, 2022). Convolutional neu-
ral network (CNN) is the most widely employed type of
deep models. It can extract effective features from raw sig-
nals or spectrographs with convolutional kernels. For exam-
ple, Shao et al. (Shao, Yan, Lu, Wang, & Gao, 2020) em-
ployed a deep CNN to diagnose faults of induction motors
from time-frequency images generated through continuous
wavelet transform of the vibration and current signals. Wang
et al. (Wang, Liu, Hu, & Chen, 2021) proposed a cascade
CNN (C-CNN) for motor fault diagnosis, which possessed a
cascade structure and dilated convolution operations to ex-
tract features from multiple scales. Tao et al. (Tao et al.,
2021) utilized deep CNNs with residual connections for mo-
tor fault diagnosis with signals from multiple sensors, and a
decision fusion strategy was proposed to obtain more reliable
final diagnosis results. These deep learning-based methods
demonstrated promising performance in different fault diag-
nosis tasks of motors.

In addition to the CNN, several other types of deep mod-
els have been successfully applied to motor fault diagno-
sis. The most popular recurrent neural network, that is, long
short-term memory (LSTM) network was utilized to capture
long-range temporal information from raw signals and diag-
nose motor faults (Xiao et al., 2018). Some studies intro-
duced graph neural networks (GNNs) to learn fault informa-
tion from graphs constructed by monitoring signals (Tang et
al., 2021).

However, the LSTM is limited in its capability to model tem-
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poral dependencies from signals with excessively long se-
quences, and the GNN is usually utilized based on manually-
designed graphs, which involve extensive expertise knowl-
edge. Although CNN is suitable for fault information mod-
eling from monitoring signals, a crucial characteristic in sen-
sory signals of motors is overlooked. Specifically, as motor
is a rotational machine, the monitoring signals such as vibra-
tion and current signals inherently exhibit strong periodicity.
Fault patterns will be not only manifested within each single
period but also between different periods. More specifically,
some types of faults may lead to variations across various pe-
riods, whereas these inter-period variations are challenging
for CNNs to capture, resulting in failure of extracting specific
important fault features.

To tackle these limitations, a multi-periodicity and multi-
scale network (MPMSN) is proposed for motor fault diag-
nosis. It aims to learn temporal variations both within and be-
tween multiple periods in the monitoring signal sequences for
motor fault diagnosis performance enhancement based on the
TimesNet proposed for time series analysis (Wu et al., 2023).
The 1D signal sequences are firstly transformed into multiple
2D tensors with different periods determined by the domi-
nant frequencies through fast Fourier Transform (FFT). Sub-
sequently, the variations within and across periods can be ex-
plicitly reflected, facilitating the multi-periodicity modeling.
Moreover, multi-scale learning is employed to extract feature
from multiple scales in the 2D space for adaptive and robust
feature learning. The multi-periodicity latent information is
modeled with a parameter-efficient multi-scale network, and
is aggregated adaptively to produce diagnosis results. The
proposed MPMSN method is validated on an experimental
dataset of induction motor faults, and results show the effec-
tiveness of the method and superiority under diverse noise
conditions.

2. METHODOLOGY

The proposed MPMSN primarily consists of stacked Times-
Blocks, which transforms 1D signals into the 2D space and
utilizes a multi-scale Inception block (Szegedy et al., 2015)
to extract features, and aggregate multi-periodicity features
for subsequent processing. In this section, the principle of
TimesBlock is firstly introduced, and subsequently the struc-
ture of the MPMSN is described.

2.1. Multi-periodicity Modeling with TimesBlock

Figure 1 illustrates the principle of the multi-periodicity mod-
eling process. The input signal sequence is firstly transformed
into multiple 2D tensors for multi-periodicity processing, and
then transformed back into 1D series for information aggrega-
tion. In the 2D space, the variations within and between mul-
tiple periods can be simultaneously captured with 2D convo-
lutional kernels.

For the input signal sequence x ∈ RL×C with C channels and
the length of L, the periods for transformation are firstly de-
termined through FFT. The single sided frequency spectrum
is obtained as follows.

A =
1

C

C∑
c=1

|FFT(xc)|, (1)

where xc denotes the c-th channel of the input sequence, and
|FFT(·)| denotes the amplitude values of the single sided FFT
spectrum, i.e., A ∈ R[L2 ]+1. Then, k frequencies with the
top-k spectrum amplitude values are selected, formulated as
follows.

{f1, f2, · · · , fk} = argTopk(A). (2)

As a result, k corresponding periods can be determined by
these k frequencies as follows.

pi = ⌈L
fi
⌉, i ∈ 1, 2, · · · , k. (3)

Afterwards, the input sequence is reshaped into k 2D tensors,
where the row number of the i-th tensor is the i-th period,
i.e., pi. To make the sequence compatible for the reshape
operation, zero-padding is performed to extend the sequence
by zero values along the time dimension to the length of pi ·
fi. Consequently, k 2D tensors z1, z2, · · · , zk are obtained,
where zi ∈ Rpi×fi .

These k 2D tensors with multiple periods will be processed
by a shared Inception block for efficient parameters. The In-
ception block utilizes multi-scale 2D convolutional kernels to
capture variations within and between periods from multiple
scales. Subsequently, the extracted 2D feature representations
are reshaped back into 1D tensors x̂i ∈ RL×d, which are trun-
cated into the original sequence length L, and d denotes the
kernel number in the Inception block.

The multi-periodicity 1D feature representations are subse-
quently fused to form comprehensive features. These 1D
tensors are aggregated adaptively with weighted proportion,
where the weights are depended on the frequency amplitudes
in the spectrum of the corresponding periods. Concretely, the
aggregation weights are calculated as follow.

wi =
eAfi∑k
j=1 e

Afj

, (4)

where Afi denotes the amplitude of frequency fi in the spec-
trum A. Consequently, the final aggregated representation is
obtained as

x̂ =

k∑
j=1

wj · x̂j . (5)
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Figure 1. Principle illustration of the multi-periodicity modeling process with TimesBlock.

2.2. MPMSN

The MPMSN consists of several stacked TimesBlocks with
residual connection. The structure of a single residual block is
illustrated as Figure 2. Two stacked Inception blocks are uti-
lized to extract multi-scale features from the multi-periodicity
2D representations. Notably, the Inception blocks are shared
for 2D tensors with different periods in a parameter-efficient
way. In the Inception block, f parallel convolutional branches
are employed to extract multi-scale features with convolu-
tional sizes of 1 × 1, 3 × 3, · · · , and (2f + 1) × (2f + 1),
respectively. Subsequently, these f feature representations
are fused by calculating the average representations among
all the branches. Between the two Inception blocks, a Gaus-
sian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2016)
is introduced as the activation function.

In the MPMSN, the residual connection is utilized between
the original 1D sequences and the aggregated 1D representa-
tions, formulated as

xl = xl−1 + x̂l−1, (6)

where the superscript l denoted the l-th residual block, and
x and x̂ are the original 1D sequences and the aggregated
1D representations, respectively. Finally, the output of the
last residual block is processed by a fully connected softmax
classifier to obtain the final diagnosis results. And the entire
network is trained by minimizing the cross-entropy loss.

3. EXPERIMENTAL VERIFICATION

To validate the proposed MPMSN method, a motor fault
dataset is utilized for verification. In this section, the experi-

ment details are described and the results are presented.

3.1. Dataset Description

The motor fault dataset was constructed through experiments
on a Drivetrain Dynamics Simulator (DDS) platform shown
as Figure 3. Eight test motors with various fault states were
utilized to acquire monitoring signals under different health
states, which were normal state (N), rotor parallel misalign-
ment fault (PMR), stator winding fault (SWF), rotor unbal-
ance fault (RU), rotor angular misalignment fault (AMR),
bearing fault (BF), rotor bowed fault (RB), and broken ro-
tor bar fault (BRB). The rotating speed of the motor, which
was 1800 RPM (30 Hz) in this experiment, was controlled by
the speed controller. And a load of 3.4 N·m was applied by
the electromagnetic brake. The axial vibration signals of the
motor were collected by an accelerometer placed on the end
cover and the data acquisition device with the sampling rate
of 5120 Hz. After data acquisition and segmentation, there
were 200 samples for each health state, and each of these
samples had a length of 1024 points. These samples were
randomly partitioned into a training set, validation set, and
testing set with a proportion of 7:1:2.

3.2. Experiment Details

As only one channel of vibration signals are used for fault di-
agnosis, the input sequences possess a dimension of 1024×1.
Top-3 frequencies are selected for multi-periodicity transfor-
mation, i.e., k = 3 in the experiments. Take a sample of
normal state as example, which is shown as Figure 4(a), and
the frequency spectrum is illustrated as Figure 4(b). It can be
observed that the top-3 frequencies are 90 Hz, 120 Hz, and
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Figure 2. Structure illustration of the MPMSN. Only one Timesblock is presented.
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Figure 3. Motor fault experimental platform.
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Figure 4. Signal sequence of a sample of the normal state (a)
and its single sided frequency spectrum (b).

180 Hz, respectively, which are 3 times, 4 times, and 6 times
the rotating frequency. Therefore, the input signal sequence
will be transformed into three 2D tensors with lengths of 29,
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Figure 5. Fault diagnosis results of three methods under dif-
fernet noise conditions. ∞ represents no additional noise is
added.

43, and 57 points accordingly in the first TimesBlock.

In this paper, the MPMSN containing two TimesBlocks are
constructed. In each Inception block, there are 5 branches
with different kernel sizes, i.e., f = 5, and the kernel sizes
of the two Inception blocks in each TimesBlock are set to
64 and 32, respectively. After the second TimesBlock, the
dimensionality is reduced to 4 through global average pooling
(GAP), and the representations are subsequently processed
by a fully connected layer to obtain the final classification
results. The mini-batch size is set to 128. Adam optimizer is
utilized with an initial learning rate of 0.001, which is reduced
to 0.0001 after training for 10 epochs, and the training process
ended after 20 epochs. All the experiments are conducted for
five times to avoid the influence of randomness.

3.3. Experiment Results

After trained on the training set, the MPMSN model achieves
99.13% diagnosis accuracy of the 8 fault states on the test-
ing set, demonstrating the strong capacity of motor fault di-
agnosis. To verify the model performance under industrial
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Table 1. Recall (R), Precision (P), and F1 value of three methods under different noise conditions. ∞ represents no additional
noise is added.

Method Metric -8 dB -6 dB -4 dB -2 dB 0 dB 2 dB 4 dB 6 dB 8 dB ∞

CNN
R 58.13 64.00 67.94 71.06 74.69 80.38 86.06 90.69 94.06 99.75
P 58.34 63.80 67.71 70.79 74.59 80.66 86.94 91.55 94.86 99.76
F1 57.86 63.50 67.24 70.33 73.86 79.73 85.63 90.46 93.97 99.75

Inception
R 44.81 52.75 54.75 57.31 60.81 66.50 73.88 80.56 86.56 99.00
P 42.82 52.25 54.89 58.40 62.33 68.24 76.19 83.77 89.30 99.06
F1 41.49 50.30 52.04 54.67 58.36 64.47 72.44 79.63 85.72 99.00

MPMSN
R 62.50 69.25 75.88 80.44 84.44 88.38 93.13 95.19 95.63 99.13
P 63.44 69.68 76.51 81.84 85.36 89.37 94.12 95.85 96.20 99.17
F1 62.40 68.16 74.77 79.36 83.84 88.04 92.99 95.13 95.59 99.12

high-noise scenarios, Gaussian white noise of various signal-
to-noise rates (SNR) from -8 to 8 is injected to the original vi-
bration signals for further experiments. To show the model ef-
fectiveness, other two deep learning models are implemented
for comparative study. The first one is a deep CNN, which
has four convolutional layers combined with batch normal-
ization (BN), and the softmax classifier is the same as that
of the MPMSN. Another is a 1D Inception network, the pri-
mary difference between which and the MPMSN is that the
multi-periodicity transformations from 1D sequences into the
2D space are removed and the 1D convolutional operations
are performed along the time direction straightforward. The
results of the 1D Inception can verify the effectiveness of the
multi-periodicity modeling in the 2D space.

Figure 5 demonstrates the diagnosis results of these three
methods under various noise conditions. It can be observed
that the diagnosis accuracy of the three methods decreases as
additional noise increases. The MPMSN can still achieves
over 60% diagnosis accuracy under the condition with ex-
tremely high noise when the SNR is -8 dB, and the accuracy
under almost all noise conditions outperforms the CNN and
Inception network. The diagnosis results in terms of other
three metrics, including Recall (R), Precision (P), and F1
value, are demonstrated in Table 1. It shows that the three
methods achieve close results in terms of three metrics, and
the results of MPMSN are superior to that of CNN and In-
ception, demonstrating the superiority of the MPMSN under
noisy conditions which are common in industry.

Figure 6 presents the confusion matrices of three methods un-
der two noise conditions. It is observed that three methods
can almost recognize all samples accurately. However, when
the noise of 0 dB SNR is added, noticeable misclassifications
occur for most fault categories. Three methods can only accu-
rately recognize the BF and RB states. For other categories,
the MPMSN achieves higher recognition accuracy compared
with the other two methods.

The number of periods used in the multi-periodicity transfor-
mation, i.e., k, is a critical parameter in the MPMSN method.
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Figure 6. Confusion matrices. (a)-(b) CNN, (c)-(d) Inception
network, (e)-(f) MPMSN. (a), (c), and (e) are under the noise
condition with the SNR of 0 dB. (b), (d), and (f) are with no
additional noise.

Experiments are conducted to investigate the effects of differ-
ent k, where k is chosen from 1 to 5. Figure 7 presents the
diagnosis accuracy with different k with no additional noise.
It can be seen that the accuracy with only one period is sig-
nificant lower than with multiple periods. When k is larger
than 1, the accuracy can reach higher than 98%. The best re-
sult is achieved when k = 3, and larger k results in accuracy

5



Asia Pacific Conference of the Prognostics and Health Management Society 2023

1 2 3 4 5
k

90

92

94

96

98

100

A
cc

ur
ac

y
(%

)

Figure 7. Diagnosis accuracy with different period number k.

decline.

4. CONCLUSION

In this paper, a multi-periodicity and multi-scale network
(MPMSN) is proposed for motor fault diagnosis. It trans-
forms 1D monitoring signals into the 2D space with multi-
ple various periods determined through FFT, and the varia-
tions both within and between various periods can be cap-
tured by convolutional networks. Multi-scale learning is also
introduced to extract feature representations from the 2D ten-
sors from multiple scales. A motor fault experimental dataset
is utilized for method validation, and results show that over
99% diagnosis accuracy can be achieved for eight fault states.
Compared with CNN and 1D Inception network, the MPMSN
also obtained superior performance in terms of recognition
accuracy and other three common metrics under different
noise conditions. The results show the effectiveness and
promising capacity of MPMSN to deal with motor fault di-
agnosis problems in industrial applications.
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