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ABSTRACT

This paper presents a Bayesian approach to predicting brake
pad and battery life based on field service data from a fleet
management system(FMS). The data includes vehicle driv-
ing data collected via telematics and maintenance record data
managed by the workshop. The proposed approach con-
sists of three modules: component health diagnosis, work-
shop data analysis and driving pattern analysis. Using KL
divergence, the health diagnosis module detects changes in
domain-based transformed features from driving data. The
maintenance record data from the workshop analysis module
estimates the prior probability of maintenance cycles. The
censored nature of workshop data is validated by updating
the posterior probability using driving patterns from driving
data. The driving pattern analysis module classifies driving
patterns for lifetime prediction. This study develops a pre-
dictive maintenance model for brake pads and batteries with-
out additional sensors using the data required for fleet oper-
ation. The mileage-based maintenance approach commonly
used for fleet management is improved by this model. Fu-
ture FMS systems are expected to make extensive use of this
concept.

1. INTRODUCTION

To reduce maintenance time and costs, Prognostics and
Health Management (PHM) technology, which diagnoses
conditions and predicts future failure time, is becoming in-
creasingly important. There are a variety of methods, includ-
ing data-driven and physics-based, for PHM diagnostics and
prognostics. Most of these methods typically require real-
time sensor data to be collected and stored or uploaded for
analysis.
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IoT technology is being actively applied in the mobility sec-
tor. In particular, for fleet companies providing services to
various customers, IoT technology is essential for service
operation and management(Arena, Collotta, Luca, Ruggieri,
& Termine, 2021). For example, connectivity between in-
vehicle IoT devices allows customers to control their vehicles
with a smartphone application, and vehicle owners to manage
their entire fleet online. Fleet owners not only want to know
how well their fleets are operating, but they also want to mon-
itor their health online. Online health monitoring can prevent
losses due to unexpected breakdowns. This requires Mobil-
ity PHM, a technology that diagnoses and prognosis vehicle
health.

However, there are challenges in applying PHM to mobility.
Diagnostic capabilities in the mobility domain are limited due
to signal noise, dependence on environmental and operating
conditions, lack of fault data, and uncertainties in mainte-
nance records(Vogl, Weiss, Helu, & moneerhelu, 2019). In
mobility, faults are detected by maintenance records, but the
use of maintenance records has the disadvantage that they are
easily censored. There are parametric and non-parametric es-
timation methods for estimating the distribution of mainte-
nance data to deal with censored characteristics, both meth-
ods are not simple and emphasize the importance of an ac-
curate definition of the data (Yang, Kanniainen, Krogerus,
& Emmert-Streib, 2022). Variability in operating and envi-
ronmental conditions is particularly important in fleet man-
agement. This makes it difficult to accurately estimate the
remaining useful life (RUL).

Previous research has proposed different approaches to ad-
dress each of these challenges. Voronov, Frisk, and Krysander
(2018) describes a novel methodology to correct the censored
nature of maintenance data. A Bayesian approach is proposed
to improve the accuracy of RUL prediction by updating the
degradation curve in real time as operating conditions change
(Gebraeel, Lawley, Li, & Ryan, 2005). Others present meth-
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ods that use more than one type of data, and are proposed
to predict the remaining useful life of an automotive com-
ponent using multiple features, such as component wear, us-
age, and beam-searched from maintenance record data and
logged vehicle data(Prytz, Nowaczyk, Rögnvaldsson, & Byt-
tner, 2015). We have separately derived the following im-
plications from these papers. 1) Vehicle lifetime prediction
can be achieved from maintenance record data with censored
attributes removed. 2) Usage patterns have an influence on
component lifetime. 3) The accuracy of lifetime prediction
can be improved by updating usage or operational data.

In this paper, we propose a novel methodology that simulta-
neously incorporates all the findings derived from previous
research. The methodology is based on Bayesian approaches
to compensate for the censored nature of the maintenance
records that are used for the residual life distribution parame-
ters, to improve prognosis accuracy using vehicle driving data
as a likelihood to update the lifetime distribution considering
the variational operating conditions. We also propose a sim-
ple diagnostic method using vehicle driving data to determine
the uncertain initial state and monitor unexpected component
failures. Our contribution is that we overcome the problem of
limited fault data using maintenance records which are well
defined and refined by our novel method, and all the data used
are acquired in real-world fleet operating situations, making
them suitable for future services. The results are compared to
the heuristic planned maintenance method by skilled mechan-
ics and validated with a physically measured residual amount
of each component.

The structure of the paper is as follows: In the ”System and
Data Definition” section, we explain details of the overall sys-
tem, the target components, and the characteristics and lim-
itations of the dataset we used. The ”Bayesian Modeling”
section then describes the overall structure and details of the
model to overcome the aforementioned limitations. In the
”Results” section, we discuss the experimental setup and its
results, as well as the validation process and limitations of the
model proposed in this paper. Finally, the ”Conclusion” sec-
tion summarises the methodology proposed throughout this
paper, the main findings and contributions.

2. SYSTEM AND DATA DEFINITION

This paper is based on vehicle and maintenance records from
30 operational taxis. Each vehicle is equipped with a data
acquisition system called ’SmartLink’. This system is used
for fleet management vehicles by SK Rent-a-Car, a car rental
service company in South Korea. This system collects vehicle
data online in real-time. All vehicles from which we collected
data are maintained by qualified mechanics who are hired by
the taxi company and the maintenance history is recorded to
ensure serviceability. In this study, we used these mainte-
nance records together with the vehicle driving data. For veri-

fication, we collected additional data that measured the actual
residuals of the target components.

2.1. Target Components: Brake Pad and Battery

In this study, we selected brake pads and 12V batteries as tar-
get components based on their safety, operational importance,
and maintenance frequency.

The brake system is responsible for stopping the vehicle and
is usually considered the most important safety component.
Brake system performance problems cause significant traffic
accidents, so it is necessary to diagnose abnormal conditions
and take proactive management. The brake works by pressing
down on the spinning disc with a pair of pads to stop it. This
creates friction between the disc and a pair of pads, resulting
in heat loss and pad wear. Taxis have a high daily mileage
and require frequent brake pad changes.

The 12V batteries have relatively few safety issues compared
to the brakes. However, undetected battery faults can cause
problems in vehicle operation, such as failure to start or en-
gine shutdown while driving. To prevent this, vehicles are
equipped with battery sensors that provide information on the
state and health of the battery. However, the vehicles used in
this study do not use the OEM-recommended batteries for fi-
nancial and durability reasons, which prevents or limits the
sensors from collecting battery status and health signals, so
an alternative monitoring method is required.

2.2. Maintenance Records from Workshop

All vehicles are maintained manually in the fleet owner’s own
workshop. When maintenance is carried out, information
such as the date of component replacement and mileage is
recorded. We refer to these as ’maintenance records’ in this
study.

The maintenance records can be classified as time-to-event
data. An event is a maintenance action, and in this study,
we used records of when brake pads and batteries were re-
placed. Assuming that all maintenance actions occur at the
end of the component’s life, we can obtain the lifetime distri-
bution of the components directly from these records. In the
real world, however, it is difficult to know the actual remain-
ing life from maintenance records, which introduces a data
censoring problem.

Censoring is generally divided into two types: left-censored
and right-censored. The left-censored means that we cannot
determine if it was ts at the nth observed time mn. Another
type is right-censored, which means that te cannot be deter-
mined at the nth observed time mn (Yang et al., 2022).

ts : start time of the component life

2



Asia Pacific Conference of the Prognostics and Health Management Society 2023

te : end time of the component life
mi : the ith maintenance time (i = 0, 1, . . . , n, )

In the maintenance records, the component was installed at
mn, and replaced at mn+1. If the mechanic always replaces
the component with a new one at mn, it can be assumed that
mn is the start of the component’s life, ts. But the component
was not replaced with a new one, but with a used one whose
remaining life is unknown, it is left-censored. At the replaced
time, mn+1, if the mechanic does not know or measure the
remaining life, the replaced component can be one of three
states: it still has remaining life, it has already exceeded its
end of life, or it is at the end of life; t1 < te, t1 > te, t1 = te.
Both left-censored and right-censored cases are common in
the real-world workshop.

To determine the lifetime of components, we need the start
time and end time, but if the data is censored, we don’t know
the exact time. One of the basic approaches to analyzing cen-
sored data is a likelihood-based approach (Leung, Elashoff,
& Afifi, 1997). In this study, we use this likelihood, which is
calculated from the vehicle driving data described below, to
deal with censored maintenance records.

2.3. Vehicle Driving Data from Telematics System

In general, three types of data are commonly employed in a
fleet management system: 1) vehicle driving data to moni-
tor vehicle usage costs; 2) GPS (Global Positioning System)
sensor data to prevent or detect theft; and 3) IMU (Inertial
Measurement Unit) sensor data to verify the occurrence of
accidents. In this paper, we use vehicle driving data collected
by the aforementioned telematics system.

There are several challenges to using this data. First, this data
is not collected directly from the target component: brake
pads do not have sensors to collect signal data, and the bat-
tery receives data from a battery sensor, but it is connected to
other internal vehicle systems, so the sensor signal includes
environmental factors and noise. Secondly, since the ultimate
purpose of collecting this data through a telematics system is
a fleet management service ’business’, the cost of data col-
lection should be minimized by reducing the column or fre-
quency. Thirdly, there is the uncertainty of environmental
conditions. As vehicles move, the external environment is
constantly changing, as are the drivers, so driving patterns
are different from moment to moment.

In this study, to address these challenges, we generate trans-
formed physics-based features using indirect data affecting
the wear of the target components and distribution parameters
differentiated by the drivers to calculate the likelihood in real-
time. For this purpose, vehicle driving data is divided into two
types: driver input data and vehicle output data. Driver input
data depends on the driver’s intention, such as steering angle,
throttle position, and brake pedal position. Vehicle output

Figure 1. Model Architecture (inspired by (Youn & Wang,
2008))

data is the vehicle’s response to the driver’s input data, such
as vehicle speed, acceleration, and brake pressure. The key is
to exploit the complex correlations between these two types
of data to improve the accuracy of the model.

3. BAYESIAN-BASED COMPONENT LIFETIME PREDIC-
TION MODEL

This section looks at degradation characteristics, Bayesian
updates, and health diagnosis and explores the influence of
maintenance records from the workshop and vehicle driving
data from the telematics system on component lifetime. We
examine the harshness of driving and its impact on the com-
ponent’s lifetime, discuss Bayesian update strategies using
driver input data as likelihood and maintenance records as
prior, and suggest a simplified method for current health di-
agnosis. The end goal of the model is to predict the optimal
time for vehicle component replacement.

3.1. Degradation Characteristics

Brake pad degradation is caused by brake pad wear, which
occurs during braking when the brake pads and discs dissi-
pate braking energy through friction. The amount of wear
has the characteristic of a non-linear monotonic increase de-
pending on the temperature. The relationship between tem-
perature and amount of wear generally uses experimental re-
sults obtained from brake dynamometer tests. To predict the
amount of brake pad wear, a physical model is used to cal-
culate the braking energy applied by the driver and the tem-
perature generated in the brake pad. Estimating temperature
increases is a relatively straightforward process. However, es-
timating temperature decreases can prove more complex due
to the influence of various factors. These factors, such as
vehicle speed, outside temperature, wheel shape, and the spe-
cific characteristics of the brake caliper, impact the cooling
coefficients, making accurate predictions a challenging task.

In the case of batteries, degradation is caused by the decreas-
ing capacity of the battery. One of the main causes of ca-
pacity reduction is the oxidation of the anode, which is due
to physicochemical changes caused by the number of charge
and discharge cycles and temperature. Since battery capac-
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ity cannot be measured by sensors, internal resistance can be
used as an alternative. Internal resistance tends to increase as
the battery degrades.

3.2. Bayesian Updating for Residual Life Distribution

We performed Bayesian updates by fusing two important
sources of data to improve the accuracy of component sta-
tus and prediction. Assuming that the degradation curve of
the component lifetime curve is linear,

Y = βt+ e, e ∼ N (0, σ2) (1){
βbrake ≃ f(T (D))

βbattery ≃ f(R(D))

The coefficient β of the lifetime curve is different for different
applications. In the case of the brake system, the temperature
can be estimated using the braking energy and cooling coeffi-
cients. This estimation can be simplified as a function of the
driving data. For batteries, the internal resistance strongly de-
pends on usage patterns such as the frequency of charge and
discharge and environmental factors, which can be expressed
as a function of the driving data. The stochastic process, Y,
is the observed or to-be-realized value by the maintenance
personnel, denoted as yt. Considering censoring, the main-
tenance personnel do not necessarily replace the component
at the degradation deadline. That is, it is replaced with the
probability in equation (2).

P (yt) ∼ P (h− c < Y < h + c|M) (2)

Y ∼ N (µ, σ2) (3)
µ+ C < M κ = 0 : eco
µ− C < M < µ+ C κ = 1 : normal
M < µ− C κ = 2 : hard

Based on the maintenance records, the probability distribu-
tion of lifetime is derived for each component. We divide
the lifetime into specific groups, taking into account factors
related to the component’s lifetime. The eco group uses com-
ponents longer than others, and the hard group has the short-
est component life compared to other groups. C should be
decided by the operational strategy of fleet management.

The prior in equation (5) would be determined by the meta-
data of the driver and the environmental status, such as age,
driving skills, driver characteristics responding to emergency
status, traffic, and if the type of data is available. In this study,
the mechanics are fixed for each vehicle and individual driver
information is not available, so the D was used. We updated
the posterior from the likelihoods of the transformed data,
which are features for each component that affect lifetime,
and the prior from maintenance records and metadata. By re-
peating the above and continuously updating the input from
the driver, we aimed to predict the replacement time of the

component more accurately.

D̃ = g(D) (4)

P (κ1|D̃0) ∝ P (D̃0|κ0)× P (κ0) (5)

P (κi+1) = P (κi|D̃i), (6)

δy ∼
∫
i,κ

P (κi+1)E(D̃i) (7)

3.3. Health Diagnostics

Components that are directly related to safety, such as brakes,
can gradually deteriorate or enter a state that is difficult to
predict with a very low probability. This can happen if the
pads wear unevenly or if there is a problem with the material
properties of the brake oil. In order to anticipate problems, it
is important to accurately assess the current condition of the
component. As previously defined, we have used a method
of monitoring the output status of the vehicle in response to
driver input.

However, due to the large variability in the environmental
conditions of the vehicles, this method can have significant
variations, so it was assumed that it would be more advan-
tageous to consider the long term rather than the short term
without all relevant information being secured.

We used KLD by comparing the probability distribution of
performance over a given period. If there is a significant dif-
ference from the reference probability, we make a compre-
hensive assessment of whether this is a problem compared
to the previously calculated lifetime and use it as a way of
identifying potential problems in advance. As KLD is some-
what sensitive to outliers based on the reference probability,
we considered the conditional probability by introducing en-
vironmental factors that may affect brake performance.

4. RESULTS

To evaluate the proposed method in this paper, it would be
most appropriate to compare it with other examples where
PHM techniques are applied, but it was difficult to find ap-
plicable cases. Therefore, we observed the advantages of
the proposed method compared to the existing maintenance
method. We monitored the data of several vehicles for a
period of time while observing the forms managed by the
existing maintenance personnel for several months. During
the observation period, we used separate equipment to peri-
odically measure the exact current state (true value) of each
component to determine the difference (c) between the time
checked by the maintenance personnel and the actual state.
We carried out a comparative evaluation between the existing
method managed by mechanics (scheduled maintenance) and
the method proposed in this paper, using the measured true
value as the basis for evaluation.
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Figure 2. Compare model prediction vs mileage maintenance
vs label data (true data) 1: early broken

Figure 3. Compare model prediction vs mileage maintenance
vs label data (true data) 2: early maintenance, Maintenance
likely occurred prior to March 2022

4.1. Experimental setup and results

To verify this, we measured the true values of the brake pads
and the battery. For the brake pads, we measured the height of
the friction surface at four points and calculated the remain-
ing thickness by averaging the values. We have developed
equipment to measure pad thickness directly, and this equip-
ment can measure the four-point heights of two types of pads
simultaneously. The measurements can also measure uneven
wear, but no such labels were found in this experiment. For
the battery, there are many ways to accurately measure its
health, but conventional methods are dependent on tempera-
ture and regular discharge cycles and are difficult to perform
in fleet operating conditions. Therefore, we used precise in-
ternal resistance measuring equipment, which is also one of
the factors in determining battery health and can be used to
distinguish excessive abnormal states. A few excessively high
internal resistance labels were found as the batteries were
constantly managed in fleet operating environments.

The figures above compare the brake pad measurements and
replacement dates based on the mileage of two vehicles. The
straight line at the top of the figure represents the trend of the
measurement changes of four types of front pads (front left in,
front left out, front right in, front right out). Due to the limited
availability of daily measurements, each data point has been
approximated by linear interpolation to create a continuous
trend. The dotted lines at the bottom of the graph represent
the daily and weekly average health index.

The validation results using the true labels showed an accu-
racy of over 0.9 and confirmed the superiority over the ex-
isting mileage-based maintenance. The first graph relates to
cases where the actual pads wear faster than the expected re-

placement point based on mileage, requiring early replace-
ment. Compared to the mileage model, the predictive model
was able to determine relatively quickly when to actually re-
place the parts. The second graph relates to cases where ac-
tual failures occur later than the expected replacement point
based on mileage. If the actual measurement values do not de-
crease steadily, it is estimated that replacement will occur be-
fore March 2022. In this case, replacement based on mileage
occurs approximately one month earlier than the actual wear
replacement point. In contrast, the model estimation results
indicate replacement at a similar time to the actual measured
values.

4.2. Discussions

The methodology proposed in this paper is expected to be
more accurate than the existing method, which was deter-
mined by the average driving of the general population, as it
reflects the uncertainties caused by driver operation. How-
ever, there are several factors that need to be considered:
The workshop data used in the study partly reflected the
mechanic’s intention. It may be difficult to use the same
method if the mechanic changes or the operating environ-
ment changes. The fleet studied in this paper had experienced
drivers who did not change the driver of each vehicle and
drove in similar environments, so there is a limitation that the
operating characteristics were not varied. Given these limi-
tations, future research should address conditional probabili-
ties encompassing diverse uncertainties, as they could play a
key role in extending the applicability of our methodology to
drivers with different driving tendencies.

We modeled the component degradation characteristics as a
linear function and combined them as a Bayesian update to
estimate the used life for specific time periods. In the back-
ground of the linear function, high-order degradation factors,
or experimental coefficient results, coefficient β needs to be
implemented. If we test components independently, such as
a rig test, then acquire the distribution of the degradation fac-
tors, it can be used for different components. By leveraging
this simplification strategy, we aim to efficiently handle the
complexity associated with different components within the
mobility system.

5. CONCLUSION

In this paper, we propose a Bayesian-based prediction tech-
nique that applies maintenance data to actual driving data in
order to apply PHM techniques to real-world data. Accord-
ingly, it is expected that an infrastructure will be established
that can combine data, including various environmental fac-
tors that may occur in operational situations. In such a sce-
nario, a clear understanding and approach to the background
and procedures for collecting maintenance data is essential.

As mobility is made up of many different components, only a
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few critical parts cannot be representative of the safety of the
whole system. Therefore, it is crucial to use a methodology
that can integrate models for each component into a coherent
whole, allowing for a systemic evaluation. In our study, we
have adopted a system that uses multiple linear models for
each component, which is designed to facilitate the applica-
tion of coefficients β derived from different methodologies
and domain knowledge bases. In future work, we aim to inte-
grate models developed by specialized component companies
using the approach proposed in this study, thereby enabling a
comprehensive system-level evaluation.

To validate the methodology in this study, we compared it
to the mileage-based management method used by skilled
mechanics by measuring uncensored true values over several
months. This confirmed that performance can be improved by
combining data used in fleet operations without the need for
expensive, high-precision sensors commonly used in PHM.
These findings open up new possibilities for the future use of
PHM techniques in mobility applications.
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NOMENCLATURE

ts Component life start time
te Component life end time
mn nth observation by inspectors
Y residual life of a component
β Linear coefficient of lifetime
t time or load factors to lifetime
e error in linear model
f probability density functions
T temperature
R internal resistance
D Driver input
yt realized maintenance time
h degradation limit or deadline
c censoring error
M maintenance person, mechanic
C user-defined range
g : D → D̃ transformation function
κ specific groups considering factors, t
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