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ABSTRACT

Autonomous Centerline Tracking (ACT) enables an un-
manned aircraft to be guided down the center of the runway,
using a camera-based Deep Neural Network (DNN). ACT is
safety-critical. The EASA Guidelines for machine-learning
based systems list numerous assurance objectives that must
be met toward certification and V&V. We extend our analysis
framework SYSAI to support meeting assurance objectives
for a system with AI components and describe a combination
with a runtime monitoring architecture that also supports ad-
vanced risk mitigation to support safety assurance of a com-
plex AI-based aerospace system.

1. INTRODUCTION

In recent years, applications of Machine Learning (ML) and,
in particular Deep Neural Networks (DNNs) have demon-
strated a performance that can substantially increase opera-
tional capabilities of autonomous Unmanned Aerial Systems
(UASs). For example, DNNs can be used to visually detect
obstacles on the runway, to identify runways during approach
and landing, or to support taxi of a UAS at an airport.

All these applications have in common that they are safety-
critical. This means that failures can lead to mission fail-
ure, cause damage to the UAS or on the ground, or even lead
to injuries or loss of human life. Therefore the system must
perform safely and with good performance in a multitude of
nominal and off-nominal situations.

Because of the safety-criticality, such systems must be care-
fully designed and analyzed and certification is necessary to
demonstrate safety and performance of such a system. How-
ever, current AC safety standards (e.g., DO-178C) only ap-
plies to “traditional” flight software. Approaches that are
based upon Machine Learning are not covered and techniques
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for V&V are still under development. Recently, the EASA
(European Union Aviation Safety Agency) published guide-
lines (European Aviation Safety Agency, 2021) on how to
deal with autonomous Level 1 systems that contain ML-based
components like a DNN. It breaks down the certification
process into numerous subtasks and objectives and provides
thoughts and initial guidelines on how to meet these objec-
tives. The document also contains a detailed use case, a Neu-
ral Network (NN) based visual landing guidance system.

The EASA document shows numerous certification objec-
tives, which span system design, design of DNN and learning
algorithm, acquisition and management of training/test data,
testing, and deployment. Many of these certification objects
are not independent of each other; therefore they should not
be studied in isolation. In this paper, we investigate, how our
framework and tool SYSAI (System Analysis using Statisti-
cal AI, (He & Schumann, 2020)) can be used to perform in-
depth statistical safety- and performance analysis in a high-
dimensional space spanned by system and environmental pa-
rameters.

SYSAI can model regions of safe and high performance, and
can characterize boundaries between these regions. In this
paper, we will discuss, how SYSAI can be used and extended
to enable unified safety and performance analyses on the in-
dividual AI component and the entire system for multiple en-
vironmental and failure scenarios. Such analysis can be per-
formed for several DNN variants and can provide feedback to
the system designer. It also can provide essential information
for Run Time Assurance and Performance Monitors. We will
present a runtime monitoring architecture, which uses the in-
formation produced by SYSAI to dynamically select a well
performing AI component based upon the current situation or
to switch to an fall-back component to sustain safety in case
the AI components cannot perform adequately.

We will illustrate, how our smart SYSAI framework can per-
form these tasks and thus support performance/safety evalua-
tion, performance improvement, and revalidation.

1

4th Asia Pacific Conference of the Prognostics and Health Management,
Tokyo, Japan, September 11 – 14, 2023 R02-06



Asia Pacific Conference of the Prognostics and Health Management Society 2023

The rest of the paper is structured as follows: in Section 2
we discuss the range of certification objectives set up by the
EASA guidelines. Section 3 provides an overview of the Au-
tonomous Centerline Tracking system. Section 4 presents
SYSAI and its extension toward multi-objective analysis and
the synergistic integration with runtime monitoring. Section 5
discusses related work, and Section 6 summarizes and con-
cludes.

2. BACKGROUND: AUTONOMY CERTIFICATION

Autonomous capabilities for aircraft are usually safety criti-
cal: a malfunction can lead to loss of the UAS and the pay-
load, it can even endanger human life in other aircraft or on
the ground. Therefore, safety of operations must be estab-
lished by certification. A first usable guide paper on auton-
omy certification and verification has recently been published
by the EASA (European Aviation Safety Agency, 2021). For
the important trustworthiness of the autonomous system, nu-
merous verification objectives are set up that must be met.
Our approach has been inspired by the EASA Guide Paper,
Appendix F (European Aviation Safety Agency, 2021; EASA
& Daedalean, 2021), where a relevant AI-based aerospace
system, a vision-based landing system, is analyzed as a case
study.

Table 1 lists the main objectives, which span five groups,
ranging from ConOps (CO-*), safety assessment (SA-*), data
collection and management (DM-*), learning management
(LM-*), and safety risk mitigation (SRM-*). Obviously ob-
jectives in all categories interact with each other. For a com-
plete certification, all objectives need to be met.

3. AUTONOMOUS CENTERLINE TRACKING

As a case study for our approach, we use the ACT (Au-
tonomous Center Line Tracking) system, which enables au-
tonomous taxiing, one of the most important ground opera-
tions for Unmanned Aerial Systems. The core component of
ACT is a Deep Neural Network (DNN) that takes images as
inputs from cameras mounted on the aircraft’s starboard wing
(Figure 1). The DNN component continuously estimates the
position and orientation of the aircraft with respect to the run-
way center line. These values are the cross-track error cte in
meters, and the heading error he in degrees, respectively.
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Figure 1. Autonomous Centerline Tracking (ACT) system

A simple fixed-gain controller uses this information to pro-

duce control signals to steer the aircraft left and right, while
the aircraft is rolling at a constant, low speed. For our exper-
iments, the X-Plane Flight Simulator (www.xplane.com)
was used as simulation environment.

4. SYSAI ANALYSIS AND RUNTIME ASSURANCE

In this paper, we present our extended AI-component and sys-
tem analysis with SYSAI. It can be used to address most of
the objectives in Table 1. The analysis can provide feedback
to the designers, and generate information to be used by our
extended Runtime Assurance Architecture (RTA, Section 4.3)
to enforce safety and risk mitigation throughout operations
while ensuring adequate performance.

4.1. The Smart Analysis Framework SYSAI

SYSAI (System Analysis using Statistical AI) (He & Schu-
mann, 2020) is a flexible statistical learning framework for
V&V and the analysis of complex and high-dimensional
cyber-physical systems with AI components. Figure 2 shows
the high-level architecture of SYSAI analysis framework. On
the left-hand side, we have the “system under test” (SuT),
which in our case is the ACT system and the XPlane simula-
tor, as described in the previous section. The SuT is executed
given a set of parameters provided by the statistical learning
model of SYSAI. The result of the test run is then used to
incrementally construct the statistical model.
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Figure 2. SYSAI architecture

For the representation and construction of the statistical
model, SYSAI uses Dynamic Regression Trees (DynaTrees
(Taddy, Gramacy, & Polson, 2011; Gramacy & Polson,
2011)), a dynamic Gaussian process model based upon Parti-
cle Filters. DynaTrees are regression and classification learn-
ing models with complicated response surfaces in on-line ap-
plication settings. DynaTrees create a sequential tree model
whose state changes over time with the accumulation of new
data, and provide particle learning algorithms that allow for
the efficient on-line posterior filtering of tree-states. A major
advantage of DynaTrees is that they allow for the use of sim-
ple models within each partition. The models also facilitate
a natural division in sequential particle-based inference: tree
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dynamics are defined through a few potential changes that are
local to each newly arrived observation, while global uncer-
tainty is captured by the ensemble of particles.

This surrogate model is initialized with available training data
and incrementally refined using candidate data points that are
produced by our active learning module. It evaluates the
current surrogate model using a customized active-learning
heuristics and suggests candidate data points that provide
most information for model refinement. For these candidate
points, the ground truth is obtained by executing the SuT.

4.2. Analysis with SYSAI

Traditional approaches for DNN performance analysis and
improvement are usually restricted to individual characteris-
tics of the neural network, e.g., architecture, learning parame-
ters, or data sets. As Table 1 shows, however, V&V objectives
span multiple dimensions, including concepts of operations,
network architecture, learning, data sets, and risk mitigation.
Both, the DNN as well as the entire system, which uses the
DNN component have to be considered.
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Figure 3. Extended SYSAI interface

To enable such a multi-faceted analysis, we have extended
the interface from SYSAI to the system under test (Figure 3)
to allow SYSAI not only to control the execution of the sys-
tem with the AI component, but also to execute automatic
experiments using different DNN architectures, learning al-
gorithms, and scenarios. In principle, our architecture is ca-
pable of performing analyses, which can include automatic
generation of data sets and DNN training. However, the exe-
cution times for such runs can be very long. In this paper, we
therefore focus on the analysis of the ACT with two different
trained DNNs, which have been provided by the designers.
Even so, the execution of SYSAI runs can take substantial
time because for each run, the full scenario of taxiing down
the runway has to be simulated in real time, which takes about
3 minutes each.

After the run of SYSAI, customized plots are produced that
can provide feedback to the designer regarding safety and per-
formance. The resulting data are also used by our runtime as-

surance architecture, which will be discussed in Section 4.3.

A B

Figure 4. A: performance analysis of two different DNN ar-
chitectures. B: Camera positions for training set on the run-
way. The runway is oriented vertical and the taxi trajectories
start at the bottom of the graph.

Figure 4A shows the probability distribution of the actual
DNN output cte versus the ground truth ctegt. Two differ-
ent DNNs, given to us were considered in this case. The ideal
DNN should have sharp peaks along the diagonal (shown in
red). Whereas DNN 1 has an overall good behavior but a
small bias for negative values of cte, DNN 2 behaves better
in that area but has substantial deviations for larger positive
values. These results are based upon the DNN only analysis.
Incorporated into the ACT system, both DNNs perform sat-
isfactory, due to robustness of the controller. Here, SYSAI
caused the execution of an entire run down the runway with a
random initial cte.

Figure 4B shows the analysis of a training set that had been
manually generated. Given different starting locations, the
aircraft drives down the runway in a typical manner without
violating any safety constraint. Such a training set obviously
covers the space of nominal operations; however scenarios,
where the AC enters in the middle of the runway, would not
be covered by this data set. Here, the designers need to de-
cide if the operational envelope is sufficiently covered, or ad-
ditional training data sets need to be generated and analyzed,
a task that SYSAI can perform.

4.3. Runtime Assurance Architecture

Many safety requirements of a complex system cannot be
totally verified during design time. In order to overcome
this gap, the RTA has developed and published the stan-
dard F-3269 for an assured Runtime Assurance Architecture
(RTA). Its underlying principles of operations are as follows
(Nagarajan, Kannan, Torens, Vukas, & Wilber, 2021): since
the AI component cannot be V&V’ed or trusted, its output
signals are considered to be “unassured” even if the inputs
are assured. In order to prevent faulty AI outputs from prop-
agating through the system, the behavior of the AI compo-
nent is continuously monitored during flight. This is accom-
plished by the RTA monitor, a traditional piece of software
certified separately. Therefore, an assured signal is available
at all times judging if the AI component can be trusted or not.
In case the AI component cannot be trusted, the RTA switch
changes the signal routing from the unreliable AI component
to an assured fallback component, which takes over system
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operations, albeit with some restrictions.
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Figure 5. R2U2 runtime monitoring architecture (inspired by
(Nagarajan et al., 2021), Fig. 1)

In previous work (He, Schumann, & Yu, 2022), we have in-
stantiated the RTA to use a powerful temporal reasoning en-
gine and use parameters and data provided by SYSAI to pop-
ulate the temporal properties. In this paper, we describe an
extension of our RTA, which does not only allow continu-
ous safety checks, but can also use the monitors to mitigate
loss of performance during run time. Figure 5 shows the ex-
tended architecture. In addition to the runtime monitor, the
RTA switch, and the assured fallback components, the sys-
tem can have multiple AI components, which are connected
to the RTA switch. These are designed to perform the same
function, but might have differences in performance for cer-
tain conditions, operational conditions, or failures. They also
might have a different computational footprint.

In our ACT case study, we use two different DNNs. The SY-
SAI analysis reveals, which of the AI components perform
better and more reliable in which region of the state space,
under which failures and scenarios, etc. This spatial and tem-
poral information is then encoded using R2U2 (temporal) for-
mulas, which then control the RTA switch. Specifically, the
switching is extended with respect to the original RTA: if the
currently active AI component fails to meet safety or perfor-
mance requirements, the R2U2 monitor will check if one of
the other AI components can do the job. If this is possible,
the RTA switch will activate that component. Note that in this
case, the R2U2 provides the assured result that the activated
component performs safely (although it is an unassured com-
ponent). This switching between the two trained networks
can be done with very little overhead.

In case, no AI component meet the necessary requirements,
the R2U2 will switch to a fallback position to assure contin-
ued system safety, exactly as in the original F-3269 RTA.

Based upon systems and safety requirements and information
obtained from the SYSAI analysis, a set of temporal logic
formulas are developed, which can be efficiently checked by
R2U2. As described in (Reinbacher, Rozier, & Schumann,

2014; He et al., 2022), R2U2 uses future and past time ob-
servers for Linear Temporal Logic; for details of operation
and the logics see these papers.

Obviously, many of the requirements concern values that
need to be checked against given thresholds in a high dimen-
sional space. Since SYSAI is capable of performing geomet-
ric estimation of boundaries, the runtime monitor is not re-
stricted to hyperplane thresholds. Richer geometric shapes
(including those based on circles, ellipses, parallelograms)
enable fine-tuning of the runtime properties.
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Figure 6. Performance areas for different components wrt.
two variables

Figure 6A shows a 2D projection of a simple scenario: we
have 3 different AI components available that are performing
particularly well in different regions of the space, spanned by
the parameter of image fuzziness, and time of the day (which
governs light conditions). These regions are abstracted as col-
ored rectangles. For example, the red NN performs well dur-
ing early morning and foggy conditions; others perform well
for bright sunlight or afternoon situations. The RTA can ex-
tract the image fuzziness using simple and trustworthy code.
The R2U2 formula for switching would be:

SW :

{
ACT ∧H[20s](¬act(DNN2)∧
(T > 1100(local)) ∧H[10s]Fz(img) > Θfz

A switch to DNN2 can happen if (a) the autonomous cen-
terline control is active, (b) this network has not been active
within the last 20 seconds, (c) the time of the day is later
than the given threshold, and (d) the fuzziness of the im-
age is larger than some threshold. In order to avoid quick
switching and oscillation, the temporal operator H[10s] has
been added. The corresponding subformula means that the
bad image quality has to persist for at least 10 seconds.

Figure 7 shows a typical example when ACT has to operate
under failures. In our case, a part of the camera image is
blocked by a piece of dirt on the camera lens. Depending on
the (x,y) position of this dirt patch, its influence on the over-
all performance can vary substantially. Figure 7A shows the
system behavior for one DNN 1. Darker colors mean better
performance. Although the overall performance is very good,
there are some critical locations, where the dirt prohibits suc-
cessful operation (bright yellow areas). The analysis of a dif-
ferent DNN 2 reveals that, albeit poorer overall performance,
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Figure 7. Performance of ACT under dirt on the camera lens.

DNN 2 is not that sensitive to dirt patches (Figure 7B). There-
fore the RTA will switch from DNN 1 to DNN 2 whenever a
dirt patch is detected in areas bounded in red.

During operations, the R2U2 continuously checks these prop-
erties (usually with numerous other safety properties) to come
up with a verdict on (a) which of the AI component is work-
ing safely and best under the current circumstances, and (b)
if the overall system safety is upheld. In the latter case, the
R2U2 switches from any AI component to a safe and assured
fallback component. System safety and performance is not
only influenced by the current system state, but also how the
system state develops over time. In Figure 6B we show safe
operational regions of two AI components (green and blue)
in a projection of two parameters or input signals. At each
point in time, the system state is represented as an (x,y) po-
sition in this figure; development of the states, trajectories,
are shown as arrows. The green trajectory in Figure 6B cor-
responds to a benign development of the system space as the
system remains in the green area. In contrast, the blue trajec-
tory will lead from the green to the blue area, requesting the
RTA monitor to switch between the green and blue compo-
nent. Finally, the red arrow is an example, where good and
safe performance leads to an unsafe state; here a switch to an
assured fallback component is necessary. In our RTA, such
checks can be done easily by combining derivatives of the
available state signals, Kalman filters, and temporal logic.

5. RELATED WORK

Several AI-based aerospace systems have been manually an-
alyzed for safety using the EASA Guidelines (European Avi-
ation Safety Agency, 2021), e.g., (EASA & Daedalean, 2021;
FAA, 2021). For the performance analysis and improve-
ment of AI components, in particular, DNN-based compo-
nents numerous approaches and tools exist. (Yu & Zhu, 2020)
provides a good overview of this area. Most of these ap-
proaches focus on network architecture and other hyper pa-
rameters of the DNN, but do not analyze the performance
of the entire system. Furthermore, analysis of architecture,
training/testing data sets, and training algorithms are usually
performed in isolation.

Runtime assurance architectures have been subjected to a

standard in the ASTM F-3269 (Nagarajan et al., 2021) for
safety certification purposes. Numerous approaches for run-
time monitoring exists, e.g., coPilot (Pike, Goodloe, Moris-
set, & Niller, 2010).

6. CONCLUSIONS

Certification procedures and guidelines for systems with ML
and AI components have numerous V&V objectives. In this
paper, we present an extension of our SYSAI framework,
which enables simultaneous analysis of objectives on mul-
tiple levels. The analysis provides feedback to the designer
and generates information for an advanced runtime assurance
architecture, which does not only continuously monitors the
system for safety violations, but also can switch between dif-
ferent AI components to yield best possible performance.

Future work will include improvements of our RTA with
respect to potentially harmful transients while switching
components and the integration of prognostics algorithms to
predict when an AI component’s performance declines or the
system becomes unsafe.
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