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ABSTRACT 

In recent years, the diversification of consumer values has led 

to an increase in the number of small-quantity, high-mix 

products. For many manufacturing companies, shipping 

inspections of such products are of great importance. As all 

products have the same value, good and defective products 

need to be efficiently identified. Now, a promising future 

application of quantum technology is considered to be 

quantum machine learning. We believe that the quantum 

classifier for SVMs using quantum kernels is one of the areas 

where quantum advantages can be demonstrated. At present, 

there are few examples of quantum classifiers applied to real 

problems in manufacturing processes. In this study, we aim 

to build a classifier that can demonstrate the quantum 

advantage and compare SVMs using classical and quantum 

kernels with conventional ResNet. Initially, a binarised 

image was generated after image pre-processing. After 

principal component analysis and dimensionality reduction 

were performed on the images, SVM with kernels was carried 

out. The kernel-based SVMs was then compared with the 

conventionally implemented Residual neural network 

(ResNet) using an evaluation index: F1-score. The results 

showed that the F1-score of SVMs using classical kernels 

was equivalent to that of Resnet. In addition, SVMs using 

quantum kernels showed higher F1-score than ResNet. In 

addition, the impact of the feature map and principal 

components of the quantum kernel was also investigated. It 

was found that when the feature map became more complex, 

conversely, circuit generation took more time. It was also 

found that the principal components are highly relevant to the 

image and cannot lead to simple results. In the future, we plan 

to accumulate more experimental data, look for scenes where 

quantum machine learning can be used and apply it to the 

manufacturing field. 

1. INTRODUCTION 

In recent years, quantum technology has begun to attract 

increasing attention. In particular, quantum machine learning 

(QML) is considered to be one of the most promising 

applications of quantum technology (Liu et al., 2021). 

Now, support vector machines (SVMs) are one of the most 

commonly used methods in various machine learning. This 

method is based on statistical machine learning and is a type 

of supervised learning. It is a versatile classifier with little 

data due to two features: margin maximization and kernel 

estimation. It is one of the most widely used algorithms in 

machine learning. 

Kernel estimation is one of the methods to estimate the entire 

distribution from a finite number of sample points and is a 

typical example of non-parametric estimation that cannot be 

expressed by parametric estimation. The inner product space 

is used for discrimination. Therefore, kernel estimation 

matches the mapping to Hilbert spaces and is a promising 

method for SVMs as classifiers. Kernel SVMs are widely 

used in image processing applications such as pattern 

recognition, as they can separate non-linear feature spaces by 

using inner products. 

The product inspection process is one of the most important 

processes for many manufacturing industries. In recent years, 

an increasing number of small-quantity, high-mix products 

have been produced, and efficient classification of good and 

defective products is required. Classification can be based on 

image data, text or sound. Image classification is widely used 

in remote sensing, biological inspection, construction and 

engineering and manufacturing. The inspection of defective 

products is a critical issue in inspection processes in the 

manufacturing industry. In such inspection processes, two-

class classification learning models are used. In recent years, 

the learning size (good and defective products) has been 

limited due to the production of a large number of products 
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in small quantities. Therefore, machine learning models are 

needed that enable classification with limited and small data. 

However, kernel estimation has two problems, one of which 

is computational cost. As the number of features increases, 

the embedding function into the feature space become more 

complicate, which requires a huge computational cost. The 

other is the limitation of embedding functions: when using 

kernel tricks in SVMs, complex functions have to be handled. 

As a means of solving the above problems, there are two 

attempts to use kernel estimation to embed feature maps with 

quantum entanglement in quantum Hilbert space. One is the 

quantum kernel SVM, which introduces Z-ZZ feature maps 

as quantum entanglements in an exponentially large feature 

space (Havlíček et al., 2019). The other is a kernel estimation 

neural network, which proposes a methodology to assess the 

potential quantum advantage in a learning task (Huang et al., 

2021). 

The aim of this research is to build a highly accurate learning 

model with a small amount of training. 

Chapter 1 described the background of the study. Chapter 2 

describes our attempts towards a sustainable quantum factory. 

Chapter 3 provides an overview of the factory's shipping 

inspections. Chapter 4 describes the SVM methods for 

classical and quantum kernel estimation used in this study. 

Chapter 5 describes the results obtained. Chapter 6 discusses 

the benefits of quantum machine learning and two key issues: 

feature maps and principal components. Chapter 7 presents 

the conclusions and future perspectives of the study. 

2. TOWARD SUSTAINABLE QUANTUM FACTORY 

In general, quantum computing has 4 merits compared to 

classical computing and 4 applications as shown in Fig.1. 

One in the merits is sustainability, second is computing speed, 

third is the no-cloning theorem, and fourth is dealing with the 

unskilled problems. The greatest merit in the figure is 

sustainability.  

Logical irreversibility and thermal diffusion are linked by a 

relationship proposed by Landauer in 1961. The logic circuits 

of current classical computers is irreversibility. If reversible 

computation is possible, it can be executed without 

consuming energy because no information is lost. Quantum 

computing is a reversible computation and therefore has the 

potential to create a sustainable ecosystem. From this 

perspective, we are thinking that the quantum computing in 

manufacturing is important for building sustainable factories. 

Let us consider the application in figure 1. As applications 1, 

Quantum cryptography is based on the quantum non-

replicability theorem. As application 2, Quantum simulations 

can be considered to be suitable for analyzing the quantum 

world. As application 3, Quantum AI is expected to solve the 

unskilled problems of classical computers due to its affinity 

for graph theory, which is easy to apply to qubits, and matrix-

based computation. We are focusing quantum cryptography 

and quantum AI for sustainable factory in NISQ era.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The merit of quantum computing and its industrial 

application. AI and ML stand for artificial Intelligence and 

machine learning.  

 

The technical roadmap for sustainable quantum factory in 

NISQ era is shown in Fig.2. The horizontal axis shows the 

year, and the vertical axis shows the epochal itinerancy and 

expectations. The era has shifted from the proposal of the 

quantum computer concept (1980-1990), the basic 

algorithms (1990-2000), the various devices (2000-2010) and 

the expectations (2010-2020). Now we are in the era of 

simulators and cloud trials (2020-2030). In the future, we are 

thinking we will move into the era of cloud & NISQ 

utilization (2030-2040) and then into the era of citizenship 

(2040-2050).  

On the hardware side, Intel has announced QPU (name: 

Tunnel Fall, 15 Jun 2023) and it is assumed that NISQ can be 

installed locally in factories soon. 

 

 

 

 

 

 

 

 

 

Figure 2. The technology roadmap for sustainable quantum 

factory in NISQ era (Personal opinion). 
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The era of hybrid utilization of classical and quantum 

computers, known as Noisy Intermediate-Scale Quantum 

Computer (NISQ), will be expected to last from 2020 to 

around 2050. The era in Fault Tolerant Quantum Computer 

(FTQC) which is capable of error correction will be perfected 

is assumed to be after 2050. 

The application area is expanding to delivery optimization, 

material & process informatics, Schedule, Inspection & 

Anomaly detection, production sales planning, automatic 

delivery and so on. Here, we focus on the inspection in figure 

2. The applicability of quantum machine learning to this 

shipping inspection is then examined. 

3. SHIPPING INSPECTION 

There are three inspection processes on shipping inspections, 

as shown in Fig.3. Figure a shows the overall diagram of the 

inspection process. It comprises existing Inspection 1, 

Inspection 2, and Inspection 3. The inspection 1 is an 

inspection using image processing. The inspection 2 is 

machine learning (ML) using Discriminative Model. The 

model is the Residual neural network (ResNet). The 

inspection 3 is ML using Generative Model. Figure b shows 

how the training model of ResNet is constructed. The number 

of layers is 50 and 1132 images are used to build the learning 

model. 

On the inspection 3, our purpose is to pick up scratch (defect) 

in the product X. Figure 4 shows image size and the size of 

the scratches. The scratch size is the 5 × 5 size and the scratch 

are scattered all over the image (250 × 250). The rate is 0.02 

and the degree of scratch is at a level that can be sought out 

by careful searching. 

Our objective is to build a classifier to identify these scratches 

with the ML using discriminative model (ML classifier). 

 

 

 

 

 

 

 

 

 

 

a Shipping inspection b ResNet as Discriminative model 

Figure 3. Shipping inspection flow of industrial product X 

and algorithm flow on ResNet as Discriminative model. 

 

  

 

 

 

 

 

Figure 4. Imaging size (250×250) of product X and size 

(5×5) of scratch area. 

4. SVM WITH/WITHOUT QUANTUM KERNEL 

In the NISQ era, quantum machine learning uses quantum-

classical hybrid methods. The methods can be divided into 

two main categories as shown in Fig.5. One is the quantum 

variational method and the other is the quantum kernel 

method. 

The quantum variational method (QVM) alternates between 

QPU, and CPU as shown in Figure a. The QPU measures the 

expected value. The expected value is assigned to the 

objective cost function in the CPU and the parameters are 

updated so that the energy of cost function is lower. The 

parameters are again assigned to the QPU, and the expected 

value is measured. The calculation ends where the cost 

function is minimized. 

The quantum kernel method as shown in Figure b, generates 

a quantum kernel in the QPU and then the kernel is embedded 

to classical algorithm. The classical algorithm performs 

classification or regression in the CPU. 

 

 

 

 

 

 

 

 

 

a Quantum variational method    b Kernel method 

Figure 5. Quantum machine learning method in NISQ era. 

 

Quantum computers are currently under development and do 

not have error correcting codes. Noise has a significant 

impact when utilized in quantum-classical hybrids. Then 

important issues are incoherent and coherent noises. 
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Compared to the quantum variational method, the quantum 

kernel method does not require repeated use of the QPU and 

the CPU, so the incoherent noise of the QPU is less.  

We decrease coherent noise because the kernel circuit can be 

shallower. We considered that, from this perspective, the 

quantum kernel method is suitable for practical use in the 

NISQ era. 

The algorithm flow for SVM with embedded classical and 

quantum kernels is shown in Fig.6. We first generated a 

binarized image after several pre-processing step. After 

principal component analysis, dimensionality reduction is 

performed. We split the data into training and testing data. 

The classical and quantum kernels are generated on the 

training data. The kernels are embedded in the SVMs to build 

the training model. Classification is carried out using the 

constructed learning model f(x). The learning models were 

evaluated in terms of F1-score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Algorithm flow of SVM with/without quantum 

kernel. 

 

 

 

 

 

 

 

 

Figure 7. Quantum circuits diagram. 

 

The balanced data sets are preferred for building learning 

models. Therefore, Principal component analysis was carried 

out on that image with 100 good products against 100 

defective products. The ratio of good to defective products 

was set to 1:1.  

On the other hand, the factory outgoing inspection is in reality 

an unbalanced data set. Pre-tests were carried out on 

unbalanced datasets ranging from 1/3, 1/4 to 1/10, and 

learning models could be built for the 1/3 and 1/4 datasets. 

We therefore used a dataset with a 1/4 proportion of defective 

products. After dimensional reduction on each principal 

component, the ratio of good to bad products was set at 3:1. 

Images reconstructed by dimensional reduction were used as 

the dataset. The data was then divided into training and test 

data. The training data was used to build the learning model. 

We generated classical and quantum kernels on the training 

data. Here, we used RBF for the classical kernel. The 

quantum kernel was generated using the quantum circuit 

diagram shown in Figure 7 (Tomono & Natsubori, 2022). The 

initial status was |0⟩  on each qubit wire. The number of 

qubits is set the same as feature volume that is the same as 

principal component. The data from the factory cannot be 

shared outside the company for confidentiality reasons. 

Therefore, a simulator was installed on-site server of factory 
to perform the quantum calculations. The number of qubits is 

therefore limited to 15. The functions 𝑈(𝑥𝑖) used were the Y-

feature map (Superposition), the Z-feature map 

(Superposition) and Z-ZZ feature map (Superposition and 

Entanglement). 

 

 

 

 

 

 

 

 

 

 

Figure 8. The relationship between the number of training 

size and F1-score in the feature maps (Y, Z and Z-ZZ). p5 

means that the number of principal components is 5. C, Y, Z, 

Z-ZZ means classical, Y, Z, and  Z-ZZ feature maps. 

 

5. RESULTS 

Initially, the relationship between the number of training and 

F1-score in the feature maps (Y, Z and Z-ZZ) is shown in 
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Fig.8. Here, we use the number of principal components is 5. 

In the pre-experiment, we confirmed that the images 

reconstructed with n=5 recreated the scratches of defective 

products. Therefore, it was thought that a learning model 

could be constructed. When considering the learning process, 

the F1-score of the harmonic mean was chosen as the 

performance indicator rather than accuracy. 

Y and Z are Pauli feature maps, which use the effect of 

superposition on each quantum gate, while the Z-ZZ feature 

map uses quantum entanglement. The figure shows that for 

all feature maps, the F1-score become larger increased as the 

number of trainings increased. When the number of trainings 

exceeded 30, the F1-score of the Y and Z feature maps 

exceeded 0.96 and then remained constant. However, the F1-

score of the Z-ZZ feature map ranged from 0.7-0.76. 

Although not shown in the figure, the learning model was 

then slowly built up, reaching 0.95 at 100 training. Compared 

to the Y, Z feature maps, it was found that it took longer to 

build the learning model. Therefore, the Z-ZZ feature map is 

not investigated in the following evaluation index: f1-score. 

Next, we examined cumulative contribution ratio shown in 

Figure 7. As the principal components increase with n = 3, 5, 

10 and 15, the cumulative contribution ratio become larger 

up to 0.55, 0.64, 0.75 and 0.82.  

 

 

 

We compared the accuracy and F1-score of SVMs to one of 

ResNet as shown in table 2. Here, we use the number of 

principal components is 15. The reason is that the Cumulative 

contribution of principal components is generally considered 

sufficient for machine learning if about 0.8 of the data can be 

reproduced. The SVM with classical kernel denoted an 

Accuracy and F1-score of 0.944 and 0.964, which were 

values close to the ResNet accuracy and F1-score of 0.940 

and 0.958. On the other hand, SVM with quantum kernel 

denoted a very high Accuracy and F1-score of 0.984 and 

0.990 for the Y-feature map and 0.988 and 0.990 for the Z-

feature map. While ResNet requires 1132 datasets, SVMs 

with classical and quantum kernel can construct a training 

model with 400 datasets. The number of datasets is about 

one-third. Furthermore, the SVM with quantum kernels (Ry, 

Rz) achieved an accuracy and F1-score of more than 0.988 

and 0.990. 

Next, the F1-score of the classical and quantum kernels (Y- 

and Z- feature map) was compared when the number of 

principal components n was set to 3, 5, 10 and 15. The results 

are shown in Figure 9. As n increases from 10 to 15, the F1-

score of the classical and quantum kernels become larger. 

This result suggests that the number of principal components 

affected the increase in F1-score. However, the F1-score of 

SVMs with classical and quantum kernels become larger and 

the difference of F1-score between classical and quantum 

become smaller as n decreases from 10, 5 and 3. The 

difference between classical and quantum in F1-score was 

0.017 when n is 3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The relationship between the F1-score of each 

kernel and the number of principal components. 

 

 

 

 

 

 

Figure 9. The relationship between number of components 

and cumulative contribution rate. P3, p5, p10 stand for 3, 5, 

and 10 of principal component number. C and Rz stand for 

classical and Z-future map. 

 

Figure 10. The relationship between the training size and F1-

score. P3, p5, and p10 stand for the number of principal 

components. C and Z stand for classical kernel and Z feature 

map. 

Table 1. The relationship between Principal component 

and Cumulative contribution rate. 

 

Principal component (n) 3 5 10 15 

Cumulative contribution rate 0.55 0.64 0.75 0.82 

 

Table 2. The Accuracy and F1-score of each kernel 

learning compared to Existing ML classifier (ResNet). 

Here, principal component is 15. C and Q are classical 

and quantum. 

 
 ResNet C-Kernel Q-kernel (Y) Q-Kernel (Z) 

Accuracy 0.940 0.944 0.984 0.988 

F1-score 0.958 0.964 0.990 0.990 
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When the principal components are less than 10, the 

relationship between the number of trainings and the F1-

score is shown in Figure 10. 

It was found that as the principal components became smaller 

(10, 5 and 3), the learning model was built with fewer 

trainings. It was also observed that when the principal 

components were 3 and 5, the learning model was built faster 

for quantum than for classical. However, the difference in F1-

score between classical and quantum was smaller. 

Though the cumulative contribution rate is 0.55 when n=3, 

we confirmed that we could clearly recognize the scratches 

that determine a defective product using reconstructed image. 

Therefore, we are thinking we could distinguish good and 

defective product. 

6. DISCUSSION 

Two main aspects are discussed. The first is the feature map 

and the second is the principal components. 

We consider the first, feature maps. Quantum kernels are 

generated by feature mapping. They report an ideal accuracy 

of 0.95-1.00 using the Z-ZZ feature map, with experimental 

values from actual equipment in the range (Havlíček et al., 

2019). The figure showed that the accuracy were between 

0.6-1.0 with a high degree of scatter. They also reported that 

use of Z-ZZ feature maps using quantum entanglement is 

important. However, in our study, the Y and Z Pauli feature 

maps with superposition obtained higher F1-score as well as 

our previous work (Tomono & Natsubori, 2022). Again, the 

F1-score using Z-ZZ feature map goes up to 0.95 with 100 

trains, but the training model could not be built early.  

The second is the principal components. The influence of the 

principal components is very significant. In the present study, 

when the principal component was 10, the F1-score were 

minimum. When principal components were less or more 

than 10, the F1-score became larger. The reasons for this may 

include the following. The fact that scratch is reproduced in 

the reconstruction of the third and fifth principal components 

means that scratch appears between the first and third 

principal components, indicating that the learning model is 

built with cumulative contributions rate up to the third 

principal component. On the other hand, the other 

components have little to do with scratching, suggesting that 

the F1 score decreases as the number of principal components 

increases. It is also considered that the f1 score increased 

from the tenth principal component onwards, as the overall 

cumulative contribution rate is reflected in the reconstruction 

of the image. In the classification of breast cancer (Havlíček 

et al., 2019), quantum kernel learning was performed on 32 

features by narrowing them down to the first and second 

principal components using principal component analysis. 

Cumulative contribution rates are not stated. Cumulative 

contribution rates are not listed, but the following principal 

components may not have been listed because the first and 

second principal components explain the disease. 

7. CONCLUSION 

Our objective is to build a learning model for high-mix low-

volume production. 

ResNet requires more than 1000 data sets. Compared to 

ResNet, we found that classical SVM and quantum SVM can 

build learning models with fewer datasets than ResNet. 

Furthermore, SVMs with quantum kernels were found to be 

able to construct learning models with better accuracy. 

There are few examples of quantum machine learning applied 

to real data. In this study, a classifier was constructed using 

real image data from a factory outgoing inspection process. 

The defective images contain scratches that can be identified 

by the naked eye. The scratches are scattered throughout the 

image. As these images are easy to separate, the SVM was 

able to build a training model quickly. Moreover, the 

quantum kernel was shown to be more promising than the 

classical kernel, with a higher F1 score. 

Further data accumulation will consolidate the construction 

of a learning model using quantum kernels, which will 

contribute to improving the efficiency of the production line. 
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