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ABSTRACT

As one of the ways to reduce road maintenance costs, road
damage detection with a mobile camera is gaining attention.
Most of conventional damage detection use supervised learn-
ing, nevertheless three practical drawbacks exist. Firstly,
supervised learning requires a high manual cost to collect
annotated data for training. Secondly, some damages are
rarely observed, resulting in imbalanced data and difficulty in
training an efficient model for all damage categories. Addi-
tionally, annotators may not identify such rare damages cor-
rectly. Thirdly, supervised learning cannot detect unknown
categories of damages, though unknown categories are often
found in a practical scene. To overcome these three draw-
backs, we propose an ensemble model that combines anomaly
detection and supervised damage detection. Anomaly detec-
tion can detect previously unknown and rare types of dam-
age, while supervised damage detection ensures damages fre-
quently observed on roads. Two different models cover wider
categories of road damages. Our ensemble model is expected
to achieve higher accuracy and lower manual cost.

1. INTRODUCTION

Automated health monitoring is expected to reduce mainte-
nance costs in civil infrastructure industry. Examples of the
monitoring are roads, bridges, and power insulators. Machine
learning is a typical approach to detect a damage on above-
mentioned civil infrastructure, such as roads (Maeda, Seki-
moto, Seto, Kashiyama, & Omata, 2018), bridges (Bukhsh,
Jansen, & Saeed, 2021), and power line insulators (Tao et al.,
2018). These conventional works mainly use one of super-
vised learning algorithms. There are three negative aspects
to apply supervised learning on an application of civil infras-
tructure. Firstly, damages of civil infrastructures are infre-
quent, making it expensive to collect these data for model
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training and evaluation. Secondly, a special equipment (e.g.,
drone) is required to acquire data because maintenance as-
sociates can’t reach overall areas on a large bridge or dam
walls by their foots. Occasionally, further consideration is
forced to apply supervised learning due to difference between
a commoditized camera and a sensor on a special equipment.
Finally, supervised learning can’t make a model to detect un-
known categories, though unknown damages may exist prac-
tically. For resolving the three issues, we propose an ensem-
ble model of supervised damage detection and anomaly de-
tection.

The contributions of this paper are summarized as follows:

1. We propose an ensemble road damage detection to find
both known categories of damages and unknown (i.e.,
versatile minor) phenomena. That may make effort to
capture versatile damages on foreground objects (e.g.,
road markers).

2. We create a dataset taken by a drive recorder, which as-
sumes collaborative data collection from vehicles.

3. This paper shows challenges, when applying anomaly
detection to road maintenance problem. The challenges
have not been shown in other papers.

2. RELATED WORK

For detecting an object from a single image, Convolutional
Neural Network (CNN) approaches have been developed,
such as YOLO-series (Wang, Yeh, & Liao, 2021; Ge, Liu,
Wang, Li, & Sun, 2021; Wang, Bochkovskiy, & Liao, 2022).
A typical feature of the above CNNs can work on little com-
putational resource. Hence, the light CNNs are implemented
even on an embedded machine. Some of Road Damage De-
tection (RDD) have been developed on the light CNNs, be-
cause road industry expects to detect a road damage on an
embedded machine of vehicles (Jo & Ryu, 2015; Nienaber,
Booysen, & Kroon, 2015). However, the light CNNs can’t
detect diverse minor damages often observed on roads, be-
cause CNNs are modeled under known categories. Therefore,
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we attempted to combine supervised RDD and anomaly de-
tection.

Anomaly detection can be classified into three types:
reconstruction-based, similarity-based, and flow-based. In
reconstruction-based approaches, normal states are modeled
through unsupervised learning, allowing the detection of
anomalies even with limited anomaly samples. Examples of
reconstruction-based algorithms include Autoencoders, Vari-
ational Autoencoders, and Generative Adversarial Networks
(Akcay, Atapour-Abarghouei, & Breckon, 2019). Similarity-
based approaches such as PaDiM (Defard, Setkov, Loesch, &
Audigier, 2021) and CFA (Lee, Lee, & Song, 2022) map input
vectors into a lower dimensional embedding space. Anoma-
lous objects are identified by their deviation from normal
states in this space. Flow-based approaches such as CSFlow
(Rudolph, Wehrbein, Rosenhahn, & Wandt, 2022) transform
normal states into a lower dimensional distribution, which
is formulated as an arbitrary probabilistic density function
through multiple invertible transformations. In this context,
anomalous objects can be detected on low probability points.

3. PROPOSED HYBRID FRAMEWORK

3.1. Ensemble of object detection and anomaly detection

We present our ensemble method for detecting both known
categories of damages and unknown phenomena. The
pipeline of our method is depicted in Figure 1. We utilized
Test Time Augmentation (TTA) and Weighted Boxes Fusion
(WBF) (Solovyev, Wang, & Gabruseva, 2021) in our ensem-
ble method during inference. Combination of TTA and WBF
is frequently used to improve accuracy of object detection
task including supervised RDD. Details of TTA and WBF
are shown in (Zhao, Zhang, & Zhao, 2023; Hegde et al.,
2020). We selected the state-of-the-art object detection mod-
els (YOLOX, YOLOv7 and YOLOv8) and anomaly detection
models (CFA, PaDiM and CSFlow). These models are care-
fully selected to ensure diverse types of algorithms.

In order to fuse supervised RDD and anomaly detection, out-
comes of both models will be merged. There is one obstacle
to merge both outcomes. An outcome of anomaly detection
model is heat map, which indicates deviation from normal
states. On the other hand, an outcome of supervised RDD is
bounding boxes. For fusing different types of outcomes, the
heat map is turned into bounding boxes before fusion. First,
the heat map is transformed to a segmentation mask by a pre-
defined threshold. Second, boundaries of the segmentation
mask fit rectangles. The above two steps generate bounding
boxes of anomaly detection.

3.2. Preprocessing and Pretraining

Preprocessing: Images captured by a drive recorder contain
a lot of roadside objects(e.g., glasses, shops or rails). To re-

duce influence of the roadside objects, all images are cropped
to focus on road surfaces, as shown in Figure 2. Each im-
age is cropped 20 to 60% vertically, then the cropped image
is resized to adjust an original image size. Next, the image
is cropped into a trapezoidal shape to remove areas outside
of the road. Although some works apply road segmentation
(Xu, Xiong, & Bhattacharyya, 2022), we don’t use the seg-
mentation because of possibility to remove a road region, un-
expectedly.

When an anchor-based object detector is selected as super-
vised RDD, anchor boxes are optimized by classical differen-
tial evolution algorithm before training. Otherwise, we don’t
use any optimizations.

Pretraining: We use pre-trained weights for both supervised
RDD and anomaly detection. Supervised RDD pre-trained
MSCOCO that targets object detection. Anomaly detection
pre-trained ImageNet that aims image classification task.

4. EXPERIMENTS

4.1. Datasets and Metrics

Datasets: We created two datasets for our evaluation. The
first dataset is a set of images captured by a drive recorder.
We installed the drive recorder on a windshield of a vehi-
cle. Standard HD (1280 * 720) is resolution of a camera on
the drive recorder. We collected 11,536 images (i.e., 2549
anomaly images and 8987 normal images) on National High-
way 9 in Japan. After the image collection, we annotated
bounding boxes on damages, when the damages are clearly
present. The annotated images are split into training and test
sets at a ratio of 9:1.

The second dataset is synthetically created. Road damages
are extracted from the first dataset, as shown in Figure.3. The
extracted damages are overlaid onto undamaged regions. As
an overlaying method, we apply Paste and Learn (Dwibedi,
Misra, & Hebert, 2017), which natural blurring is similar ef-
fect to Poisson blending. We synthesized two sets of anomaly
images. One of the two sets includes 2801 images. We local-
ized an anomaly object on the images manually. The other
set includes 2836 images. Positions of anomaly objects are
selected randomly from undamaged regions.

Metrics: We use two metrics for evaluating each model in
our ensemble model. Mean average precision (AP) evaluates
supervised RDD. Pixel level Area Under Curve(AUC) evalu-
ates anomaly detection model.

4.2. Results

4.2.1. Anomaly Detection

Before evaluating our ensemble model, we show evaluations
of each single model in our ensemble model. The first evalu-
ation confirms performances of the recent anomaly detection
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Figure 1. Pipeline of our ensemble model. Our model is consisted of anomaly detection and supervised road damage detection.

Figure 2. Pictorial cropping pipeline for eliminating roadside objects.

Figure 3. Road damages and their segmentation masks. From
the left, the first and the second images show a linear crack
and the segmentation mask, respectively. The third and the
forth show a pothole and the segmentation mask.

models, when trapezoidal cropping is applied as preprocess-
ing. The result is shown in Table 2. We noticed that trape-
zoidal cropping improved the results of PaDiM and CSFlow.
However, the cropping deteriorated performance of CFA (Lee
et al., 2022). We considered that cropped regions may harm a
model of CFA, because, unlike other methods, CFA focuses
the adapting patch descriptors to the target domain. The high
simplicity of the cropped regions in comparison to the nor-
mal image features acquired through pre-training may lead to
a higher relative anomaly in the normal regions. This may
be caused by the contrastive learning in CFA, which lacks an
absolute reference point. In our experiment, PaDiM achieves
the highest pixel level AUC.

Figure 4 depicts the qualitative inference result of PaDiM.
The first column shows the original images, the second is the
ground truth, the third is the estimated anomaly heatmap, the

fourth is the thresholded segmentation result, and the fifth is
the detected anomaly regions on the images. We observed
numerous false positives on areas of the image that are not
abnormal. In the images in the second row, multiple false pos-
itives are present on a normal road surface, even though sev-
eral damages can be detected correctly. The third row shows
false positives on both sides of the road. PaDiM mistakenly
detects shades, a vehicle, and glasses as anomaly objects.

From the above evaluation, we considered that a single
anomaly detection model cannot reduce false positives. An
eminent effect of anomaly detection is finding image patterns
that are rarely observed on a road. When aiming to detect
all road damages by a single anomaly detection model, we
must collect all normal road patterns on a road. In addition
to existing normal patterns, we have to handle wide varieties
of shades by roadside objects, such as trees, road signs, and
utility poles. Since shades vary by light condition of the sun,
diverse light conditions should be concerned when collect-
ing normal images. Therefore, we concluded that only an
anomaly detection model cannot overcome to suppress these
false positives.

4.2.2. Supervised Road Damage Detection

As well as evaluations of anomaly detection, we evaluate a
single supervised RDD model that includes in our ensemble
model. Table 1 presents performance comparison between
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several CNNs used as supervised RDD. The CNNs are se-
lected to implement on an embedding machine(i.e., working
on a poor computational resource). (a) in Table1 shows the re-
sults evaluated on one of synthetic datasets, which positions
of anomaly objects are directed manually. We considered that
every model can detect damages successfully, as the most of
APs in (a) surpass 90. This is because both training and test
datasets include the same feature patterns of damage.

(b) in Table 1 shows the results evaluated on another synthetic
dataset, where the positions of anomaly objects are randomly
selected from undamaged regions. We cannot observe a large
gap between (a) and (b) in Table 1, because most of the APs
exceed 85. These results indicate that supervised RDD do
not strongly depend on light conditions, roadside objects, and
other vehicles. In other words, supervised RDD can learn
feature patterns of damages on roads.

We elaborately evaluate the CNNs on another dataset, which
damages are naturally occurred on actual roads. The result
is shown in (c) of Table1. We found that performances of all
models are drastically down compared with the above results
on synthetic datasets. In (c) of Table1, AP of ”closed” row
is higher than other rows. A model of ”closed” row indicates
that trainig and test datasets are the same, completely. The
result means that supervised RDD could not train wide vari-
eties of road features in actual scenes. Even with the current
state-of-the-art of light CNN, AP50val in Table1 is under 30.

4.2.3. Ensemble model & Discussion for future work

We evaluate our ensemble model shown in Figure 1. The
model consists of supervised RDD and anomaly detection.
Table 3 shows the APs of our ensemble model. The table re-
veals that the AP of our ensemble model is lower than that
of a single supervised RDD. This result is attributed to the
occurrence of false positives in the anomaly detection com-
ponent of our ensemble model.

We hypothesized that the negative result may be caused by
limitations of fusion. Weighted boxes fusion in our ensemble
model have several drawbacks, such as difficulty of hyperpa-
rameter tuning, even treatments to all fused models, and dis-
regard for small objects. In addition to fusion, we considered
that preprocessing is another cause of the result. We can’t
efficiently suppress distractions (e.g., light condition, objects
except for roads). Semantic road segmentation is a candidate
to resolve the issue, even if the approach mistakenly segments
road region.

5. CONCLUSION

Toward road damage detection that finds also anomaly phe-
nomena on roads, we proposed an ensemble model of super-
vised road damage detection and anomaly detection. First,
we evaluated a single model in our ensemble model on our

driving recorder dataset. For avoiding performance degra-
dation by roadside objects, we applied trapezoidal cropping
as pre-processing. Evaluations showed that supervised RDD
works well on synthetic datasets and degrades on an actual
dataset. As anomaly detection, we could observe false posi-
tives caused by remaining roadside objects.

Second, we proposed an ensemble model to aim better per-
formance than a single model. Unfortunately, we couldn’t
achieve better result. We considered that further research is
required to fuse multiple models for better performance.
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row is evaluated under the same dataset for both training and testing.
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Model Params APval APval
50 APval

75 APval
S APval

M APval
L

YOLOX-s 9.0 M 90.9 97.9 96.3 77.9 89.5 94.7
YOLOX-l 54.2 M 92.7 98.1 96.8 80.6 92.0 95.5
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YOLOv8-s 11.2 M 95.4 97.3 96.7 84.9 95.2 97.0
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Table 3. Comparison between supervised RDD and ensemble models. Both models are evaluated on actual damage dataset

Model APval APval
50 APval

75 APval
S APval

M APval
L

YOLOv8-s 15.9 33.1 14.2 5.9 8.6 23.8
YOLOv8-s + PaDiM 2.7 5.0 2.8 1.4 1.5 6.2
YOLOv8-l 15.9 35.4 12.1 4.4 10.8 25.3
YOLOv8-l + PaDiM 2.1 4.1 2.0 0.0 0.0 9.6

Figure 4. Qualitative inference results of PaDiM
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