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ABSTRACT 

The heavy-duty gas turbine is playing an increasingly 

significant role on power generation due to its lower-

emission, higher flexibility and thermo-efficiency. Main 

subsystems of the gas turbine like compressor, combustor 

and turbine degrade over the operating time under the harsh 

environmental conditions, which largely impacts the 

efficiency and productivity of the system. Therefore, it is 

critical to develop effective approaches to monitor 

performance degradation of a heavy-duty gas turbine for 

system predictive maintenance thus improving the efficiency 

and productivity of the machine. This paper presents a new 

physics informed machine learning methodology to predict 

the degradation of gas turbine by seamlessly integrating 

thermodynamic heat balancing mechanism, component 

characteristics, multi-source data and artificial neural 

network model. The mechanism-based thermodynamic 

model is established for multiple subsystems considering the 

balance of flow, mass and energy, and then integrated to a 

system level for performance simulation of the gas turbine 

under different conditions. The system model is able to 

effectively simulate values for those parameters that are not 

measurable (e.g. GT exhaust flow) or inaccurately measured 

(e.g. fuel flow). Machine learning based data cleaning 

approach is employed to preprocess the multivariate raw data 

of the gas turbine. The difference between design 

performance data and corrected value obtained from the 

physics-informed model under ISO conditions is utilized to 

assess the performance degradation. A Long Short-Term 

Memory (LSTM) model is established from the fusion of the 

actual and simulation data to predict the performance 

degradation of the gas turbine. A comparison study with the 

classical Nonlinear Autoregressive Network with External 

Input (NARX) neural network is conducted to demonstrate 

the advantage of the proposed method.  

Key Word: Gas Turbine, Thermodynamic Balance, 

Performance Degradation Predict, Machine Learning, LSTM  

1. INTRODUCTION 

Nowadays gas turbines are being used extensively in various 

industries to produce mechanical power and employed to 

drive various loads such as generators, propeller or pumps. 

Gas turbines used for power generation are commonly 

referred to as a heavy-duty industrial gas turbines (HDGT). 

In the quest to perfect performance and satisfactory operation 

of HDGT, compressor pressure ratios have increased from 

about 4:1 to over 40:1 together with high operating 

temperatures (about 1800K), resulting in thermal efficiencies 

exceeding 40% (Razakv, 2007). These features such as 

lower-emission, higher flexibility and thermal efficiency 

make HDGT a strong competitor to other types of prime 

movers. However, main subsystems of HDGT like 

compressor, combustor and turbine degrade over the 

operating time under the harsh environmental conditions, 

leading to reduced capacity and thermal efficiency, which 

largely impacts the efficiency and productivity of the system. 

Several studies of HDGT suggest that the decrease in output 

can easily reach 5% after a month’s operation (Diakunchak, 

1992). Compressor fouling which is the most common form 

of performance degradation is mainly due to scale deposit 

formed on the compressor blades by dirt and dust carried in 

by the air, but periodic compressor washes should alleviate 

this issue. Therefore, in order to monitor performance 
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degradation of HDGT for system predictive maintenance, it 

is extremely necessary to develop accurate simulation model 

and universal time series prediction model, which is still very 

challenging due to the high nonlinearity, system complexity, 

varying conditions, and strong cross-coupling of high-

dimension parameters under the harsh operation environment 

of HDGT. 

The research on gas turbine performance monitoring has 

received significant amount of attention in the last three 

decades. An accurate and fast prediction of the dynamic 

behavior of gas turbine is very critical for stable operation, 

predictive maintenance, and fault diagnosis and control 

design. Analyzing system dynamic characteristics through 

numeric models has been a popular approach for predicting 

the transient behavior of gas turbines. Two main models have 

been widely used for simulating the behavior of a gas turbine. 

Rowen’s model which is the most popular dynamic model 

proposed in study (Rowen, 1983), is based on 

thermodynamic balance mechanism. The other model, which 

is known as IEEE model (deMello, 1994), has deeper sight 

into internal processes for combined cycle power plants. 

Camporeale at al. (2002) presented a high-fidelity real-time 

simulation code based upon an integrated, nonlinear 

representation of gas turbine components. For the purpose of 

high fidelity, the actual composition of the working gases and 

the variation of the specific heats with the temperature, 

including a stage-by-stage model of the air-cooled expansion, 

are considered in the mathematical model.  

In recent years, numerous studies show that these dynamic 

models allow for simulating and predicting gas turbines 

behavior by making approximations around transient 

behaviors. Kurosaki et al. (2018) proposed an efficient 

numerical integration method for a volume dynamics model 

in gas turbine transient simulations. The proposed model was 

applied to transient simulations of a compressor rig test 

model composed of a compressor, a nozzle with variable 

geometry and a volume placed between them. Tsoutsanis and 

Meskin (2019) presented a dynamic performance model of a 

gas turbine. The model is developed in Simulink and 

validated with an engine simulation commercial software. 

Although significant progress has been made in the 

simulation of physics-driven models, the fact is that the 

accuracy of model lies on the precise description of the 

characteristic curves and it is difficult to obtain component 

characteristics, in particular those of the compressor.  

Meanwhile, it is widely known that the time of operational 

monitoring based on physics-driven model rise with the 

complexity of the model. In this context, the data-driven 

approach (Liu & Karimi, 2020, Asgari & Chen, 2018) 

focuses on actual multivariate data to simulate the behavior 

of real and complex systems. These models (Kumar et al. 

2023) offer fast predictions that is essential for field 

deployment. Bahlawan et al. (2018) proposed a NARX 

method to capture the start-up dynamics phase. Numerical 

results showed that the proposed data-driven models could 

capture the behavior of the gas turbine with effect. However, 

the data-driven model is based on statistics and machine 

learning technology, and the ability of machine learning 

technology to handle multivariate raw data, which is usually 

accompanied by noise and the problem of over-fitting & 

generalization, presents additional challenges when modeling 

gas turbine.  

This paper presents a new physics informed machine learning 

methodology to predict the degradation of HDGT by 

seamlessly integrating thermodynamic heat balancing 

mechanism, component characteristics, multi-source data 

and artificial neural network model. The mechanism-based 

thermodynamic model is established for multiple subsystems 

considering the balance of flow, mass and energy, and then 

integrated to a system level for performance simulation of 

HDGT under different conditions. The measurements from a 

real-time, on-line performance monitoring of gas turbines 

over a period of one year and machine learning based data 

cleaning approach is employed to preprocess the multivariate 

raw data. The thermodynamic model is utilized to calculate 

expected and corrected performance and compare it with 

measurements and design performance. The deviation 

between design performance data and corrected value under 

ISO conditions is utilized to assess the performance 

degradation. In this paper, we use the corrected relative 

efficiency (ηcorrected/ηdesign) of the compressor and turbine to 

assess the degradation of the compressor and turbine, 

respectively. The trend of effective efficiency ηe of the unit 

reflects the degradation of overall unit. A Long Short-Term 

Memory (LSTM) model is established to predict three 

evaluating indicators (overall effective efficiency ηe, 

compressor efficiency ηc, turbine efficiency ηt). A 

comparison study with the classical Nonlinear 

Autoregressive Network with External Input (NARX) neural 

network is conducted to demonstrate the advantage of the 

proposed method. 

The paper is organized as follows. After this introduction, 

Section 2 briefly describes thermodynamics of gas turbine 

cycles and summarizes mechanism-based thermodynamic 

model of a simple cycle and a single shaft HDGT. Section 3 

presents the performance calculation using the model 

proposed by Section 2 to evaluate the expected and corrected 

performance. Section 4 briefly introduces the LSTM and 

showcases the developed model for predicting performance 

degradation indicators. Section 5 presents the results of 

practical application examples with a comparison study with 

NARX model. Finally, Section 6 concludes this study. 

2. THERMODYNAMIC MODEL  

A gas turbine must have at least the following components:  

compressor, combustor and turbine. Basically, a single-shaft 

gas turbine consists of a compressor, combustor and a turbine 

as shown in Fig. 1. The gas turbine can also include other 
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components, such as secondary air systems, for cooling and 

protection of turbine components.   

 

Figure 1. Schematic layout of a single-shaft gas turbine 

Next, we will introduce the mathematical models of each 

module separately. Nomenclature of subscripts numbers is 

shown in Fig. 1.  

2.1. Inlet System  

The inlet system belongs to the auxiliary system of a gas 

turbine, and its function is to transport air and filter 

impurities. Assuming that it is an adiabatic process with the 

pressure loss but without energy loss. 

 1 0=T T  (1) 

 1 0=P P  (2) 

where   is the inlet pressure loss coefficient. 

2.2. Compressor Module 

The characteristic of the compressor is normally represented 

by using non-dimensional groups. It is very useful to carry 

out off-design performance calculations of the gas turbine. 

The definitions of these groups are given as follows: 

1. Corrected mass air flow 
1 1 1G T p  

2. Corrected rotational speed 
1n T  

3. Pressure ratio 
2 1C p p =  

4. Isentropic efficiency 
C  

A typical compressor characteristic curves is shown in Fig. 4 

and expressed as follows: 

 ( )1 1 1 1 1= ,C f G T p n T  (3) 

 ( )2 1 1 1 1= ,C f G T p n T  (4) 

 

Figure 4. Compressor characteristic curves 

From Figure 4, it can be seen that as the speed increases, the 

constant rotational speed line becomes vertical. Figure 4 also 

shows the surge line. Due to an unstable phenomenon known 

as surge, any operation on the left side of the surge line is 

impossible.  

From Eq. (5) the compressor discharge temperature is 

calculated by: 

 

1

2 2

1
= 1+ 1

a

a

k

k

C

C

T T 


−  
 − 

    

 (5) 

The compressor specific work input is given by:  

 1 2 1= ( )C paW G c T T  −  (6) 

where ka and cpa are the compressor ratio of specific heats and 

the specific heat of air at constant pressure, respectively. 

2.3. Combustor Module 

The purpose of burning fuel in a combustor is to increase the 

temperature of the gas and to generate heat inputs which 

control the power output of a gas turbine. Heavy-duty 

industrial gas turbines are generally not limited by weight and 

size and may be necessarily allowed to burn more forms of 

fuels, including liquid and gaseous fuels. These features of 

industrial combustors include: 

1. Volume of combustor is relatively larger. 

2. Enabling lower quality fuels to be burnt in the combustor. 

3. Lower pressure losses in the combustor. 

Applying the laws of conservation of mass and conservation 

of energy result in respectively. 

 2 3B f

d
V G G G

dt


= + −  (7) 

 2 2 3 3B f u B

d u
V G h G H G h

dt


= + −  (8) 

where VB is the volume of combustor, Gf is the fuel flow rate, 

Hu is the lower heating value of the fuel and ηB is the 

combustion chamber efficiency. The station numbers 2 and 3 

refer to the inlet and discharge of the combustor, respectively.  

From the gas state equation,  

 
g

P

R T
 =  (9) 

Taking the derivative with t on both sides of the gas state 

equation, yields 

 2

1 1

g g g

d dP P dT

dt R T R T

P

dt R T dt
d

  
= 


−


=  (10) 
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By combining Eqs. (7) and (10), the dynamics of the 

combustor outlet pressure is described as follows 

 
 

33 2

3

33 3
( )g f

B

R TdP P dT

dt V T dt

G G G+ −
= +  (11) 

By combining Eq. (8) and Eq. (10), the combustor discharge 

temperature is obtained by 

 
3 2 2 3 3 3 2 33

3

( ) ( )g g f u B f

B pg

R T k G h G H G h h G G GdT

dt PV c

 + − − + − =
 

(12) 

where kg is the ratio of specific heats of the gas, and cpg is the 

specific heat of the gas at a constant pressure. 

2.4. Turbine Module 

As with compressors, it is convenient to represent the 

performance of turbine according to non-dimensional 

parameters such as flow rate and rotation rate. Unlike the 

compressor, there is no question of turbine surging. It can be 

assumed that the gas flow in turbine is quasi-steady. As such, 

Ferrier Gale formula is used to estimate the characteristic of 

a turbine. The isentropic efficiency of the turbine is defined 

as: 

 

 

( )
2

2

0

1 0.4 1 2T

n
q q

n


  
 = −  −  − 
   

 (13) 

where  

 
 

30

0 3

n G
q

n G


=


 (14) 

where n0 and G30 are the rotational speed and mass air flow 

rate at the designed condition, respectively. The turbine 

discharge temperature is given by 

 

 

4 3 1

1
= 1 1

Tg

g

k

k

T

T T 



−

  
  
− −  

   
   

 (15) 

The power produced by the expanding gas is given by 

  
3 3 4= ( )T pgW G c T T −  (16) 

2.5. Turbine Blade Cooling 

Turbine blade cooling is designed to maintain the blade metal 

temperature at a safe value, thereby achieving cooling and 

protection of the turbine. Normally the compressed air is used 

as the cooling medium extracted from the compressor 

discharge and bled into the turbine. For the equivalently 

cooled flow has been modeled, the model can be represented 

using two distinguishable phases as follows: (1) mixing 

between main flows and the cooling air of the turbine inlet, 

and (2) mixing between the new main flows and the cooling 

air at the exit of turbine. The equivalent enthalpy value at the 

inlet is given by: 

 
 

3 3
3

3

ein c
e

ein

G h G h
h

G G

+
=

+
 (17) 

where Gein is the cooling air flow rate at inlet and hc is the 

enthalpy of cooling air. The ratio of fuel to air of the gas 

entering the mixer is obtained from the relation: 

 

 
3

3

3

3

3

3

1

1

1

e

ein

f
G

f
f

G G
f

 
 

+ =
 

 + 
+ 

 (18) 

The equivalent temperature at the inlet is obtained as a 

function of the inlet enthalpy and the ratio of fuel to air: 

  ( )3 3 3,e e eT f h f=  (19) 

The parameter calculation method at the outlet is similar to 

that at the inlet, and the equivalent enthalpy, the ratio of fuel 

to air and the equivalent temperature at the exit of turbine is 

given by Eqs. (20)-(22) respectively. 

 
 

4

3

ein ein eout c
e

ein eout

G h G h
h

G G G

+
=

+ +
 (20) 

 

 
3

3

3

4

3

3

1

1
+

1

e

ein eout

f
G

f
f

G G G
f

 
 

+ =
 

 + 
+ 

 (21) 

  ( )4 4 4,e e eT f h f=  (22) 

where Geout is the cooling air flow rate at outlet. Based on the 

mathematical model of turbine blade cooling module, Figure 

5 shows the Simulink representation of the cooled blocks.  

 

Figure 5. Simulink scheme of cooled blocks at turbine 
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2.6. Rotating Shaft Dynamic 

As shown in Figure 1, the shaft connects the compressor, the 

turbine and the load. Depending on the moment of inertia I, 

the angular acceleration produced by unbalanced torque 

among the turbine-generated torque MT, the reverse torque 

from the compressor MC and the loading ML, is given by: 

 
 

=
T C L

d
I M M M

dt


− −  (23) 

Taking the angular acceleration ω=πn/30 and P=Mω, the 

rotational motion of the shaft can be expressed by: 

 
 

2

900
= ( )T C L

dn
W W W

dt I n
− −  (24) 

where WT, WC and WL represent the mechanical power of the 

turbine, compressor and electrical load, respectively. 

2.7. Thermophysical Property Calculation  

To simplify the explanation of gas turbine behavior during 

off-design operation, we make the following assumptions: 

1. The medium of gas turbine is ideal gas and the internal 

gas flow is approximately one-dimensional steady flow. 

2. The influence of metal thermal inertia can be ignored. 

However, when the medium of gas flows in a gas turbine, its 

composition and temperature varies. It will cause significant 

deviation if the temperature changes are ignored. Therefore, 

the effect of temperature on the specific heat is considered in 

this study. 

Isentropic adiabatic process, according to the definition of 

specific entropy:  

 
 

p

Q dT dp
ds C R

T T p


= = −  (25) 

When changing from state 1 to state 2 in the isentropic 

process:  

 
 2

1

2
2 1

1

ln 0
T

p
T

pdT
s s C R

T p
− = − =  (26) 

 
 2

1

2

1

ln
T

p
T

pdT
C R

T p
=  (27) 

Defined   as a function related to temperature: 

 
 2

1
2 1( ) ( )

T

p
T

dT
C T T

T
=  −  (28) 

By combining Eq. (27) and Eq. (28), we can obtain Eq. (29): 

 
 

2
2 1

1

( ) ( )= ln = ln
p

T T R R
p

 −  (29) 

For the convenience of calculation, natural logarithm is 

changed to the ordinary logarithm as follows:  

 
 

2 1( ) ( )= lg
lg

R
T T

e
 −  (30) 

The entropy function is defined by: 

 
 lg

=
e

R
   (31) 

By combining Eq. (30) and Eq. (31), the calculation equation 

Eq. (32) to evaluate the entropy of the isentropic adiabatic 

process is obtained by:  

  
2 1- = lg   (32) 

The composition of gas varies according to the ratio of fuel 

to air f, thus thermophysical property calculation should take 

it into consideration. The ratio of fuel to air on a mass basis 

for complete combustion is called as the stoichiometric fuel-

air ratio fst.  

 
 

(1 ) ( ) (1 )st a

st st

f f
f y f y y

f f
+ = + + −  (33) 

where ya is the specific thermal property of air, and y and yst 

represent the specific thermal properties of gas with fuel-air 

ratio f and fst, respectively. Defined   as follows:  

 
 1

=( ) st
st a

st

f
y y

f


+
−  (34) 

Eq. (33) can be described with   as follows: 

 
 

=
1

a

f
y y

f
+

+
 (35) 

In conclusion, the correction function Eq. (36) can be used to 

calculate the specific heat capacity cp, enthalpy h and entropy 

φ according to fuel-air ratio f. 

 

 
=

1

1

1

pp pa c

a h

a

f
c c

f

f
h h

f

f

f








+

+



= +
+


 =  +

+

 (36) 

In the above calculation, it is assumed that the working 

medium is dry air, but the actual air sucked in is wet, and the 

influence of air humidity on the thermal process must be 

considered. Relative humidity (RH) refers to the ratio of the 

mass of water vapor in a humid air to the mass of water vapor 

in saturated air at the same temperature and pressure. Air 
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moisture content dair (i.e., the ratio of water vapor mass to dry 

air mass in the air) is calculated by: 

 
 

=0.622 s
air

s

RH p
d

p RH p



− 
 (37) 

Now Eq. (35) can be described with dair and f: 

 
 (1 )

=
1

air w

air

f y d y
y

f d

+ +


+ +
 (38) 

For the convenience of calculation, refer to the method of 

fitting thermal properties and corresponding 𝜃 functions 

using temperature polynomial approximation: 

 

 

0

3 1

1

3 1

0

1

, = ,

, 10

, 10
1

p p

n

p c i i c

i

n
i

h i

i

n
i

i

i

c a

h ia

i
a

i

  

 

 

=

− −

=

− −



=






=


 = +

−







 (39) 

where temperature independent variable 
310T −=   and T 

is gas temperature. Encode the calculation function Eq. (39) 

into an S function and embed S function into the Simulink 

model. 

2.8. Model Integrations for Simulation 

The component model was developed in Matlab-Simulink 

which is a complete object-oriented tool used for modeling 

and simulation of integrated and complex systems. Figure 6 

shows the integrated system performance model introduced 

above for the subsystems including compressor, combustor, 

turbine, rotating shaft, and secondary air system and control 

unit. For clarity, the simulation model of each subsystem 

consists of many blocks: 

 

Figure 6. Simulink scheme of thermophysical model 

3. PERFORMANCE DETERIORATION ASSESSMENT 

Due to the complexity of actual operating conditions, gas 

turbines cannot operate for prolonged periods at their design 

conditions. A change in ambient conditions and power 

demand from design conditions results in the gas turbine (GT) 

performance deviating from its design point, also called off-

design condition. In order to eliminate the impact of ambient 

conditions and dependency on operating point during the 

deterioration prediction, the corrected parameters are 

calculated by adjusting actual operating to rated conditions. 

For the purpose of performance monitoring the deterioration 

prediction of gas turbine is presented in this study, with an 

integrated procedure as shown in Fig. 7. The model at the 

actual mode for the calculated performance deterioration is 

consistent throughout the whole operation. The indicators 

that characterize performance degradation include three 

efficiency values of the entire machine, compressor and 

turbine.  

The GT performance deterioration (Deviation) can be 

quantified by calculating parameters such as heat balance and 

performance correction utilizing actual data. Figure 8 shows 

the process of performance analysis and calculation. In Fig.8, 

Heat balance point for performance analysis is the validated 

measurement for the actual operating conditions (or 

respectively calculated value from the on-line heat balance). 

Then the performance model discussed in the previous 

section produces the Expected value under current conditions 

(ambient, load, and cooling system). In general, the 

difference between the Heat Balance and Expected data is the 

current degradation, the performance loss against the new and 

clean gas turbine under actual operating conditions. In order 

to eliminate the impacts from the ambient condition change, 

current degradation is transferred to rated condition (ISO 

condition in this paper) by model calculation. The Rated data 

are treated as the benchmark used as the simulation base. 

These data can be used as the original design data at the ISO 

condition. The Corrected data are used as the Heat balance 

data transposed back to the ISO condition.  In this paper, we 

use the corrected relative efficiency (ηcorrected/ηdesign) of the 

compressor and the turbine to assess their degradation. The 

trend of the unit effective efficiency ηe reflects the overall 

degradation of the unit. 

 

Figure 7. Integrated procedure for calculating rates 
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Figure 8. Physics-based performance calculation 

4. PERFORMANCE DETERIORATION PREDICTION 

It is critical to develop effective approaches to monitor 

performance degradation of a heavy-duty gas turbine for 

system predictive maintenance. A Long Short-Term Memory 

(LSTM) is established from performance degradation 

indicators discussed in the previous section to predict the 

performance degradation of the gas turbine.  Specifically, we 

begin this section by introducing the fundamental LSTM 

model briefly. Then, we provide more detailed explanation of 

the algorithm's theoretical foundation and design decision 

that underlies the proposed framework. 

4.1. LSTM 

LSTM stems from the RNN (Recurrent neural network) 

model. RNN is a prototypical artificial neural network that 

identifies temporal patterns in time series data with high 

accuracy and efficiency. The LSTM network, which 

incorporates memory units to facilitate learning of long-range 

temporal dependencies, to forget previously the hidden states 

and to update them given new information, was proposed by 

Hochreiter & Schmidhuber (Hochreiter & Schmidhuber, 

1997) to resolve the problem of gradient vanishing and 

explosion upon training RNN model with the back-

propagation through time (BPTT) (Werbos, 1990). As shown 

in Figure 9, the LSTM incorporates three control gates of 

input, output and forget G as well as a memory cell. Given a 

sequence of inputs (x1, … , xt), the LSTM model computes 

the hidden control sequence (h1, … , ht-1, ht) and the cell 

memory sequence (c1, … , ct-1, ct). This process can be 

described by the following set of equations: 

  
1( [ , ] )t f t t ff W h x b −=  +  (40) 

  
1( [ , ] )t i t t ii W h x b −=  +  (41) 

  
1tanh( [ , ] )t C t t CC W h x b−=  +  (42) 

  
1( [ , ] )t o t t oo W h x b −=  +  (43) 

  tanh( )t t th o C=  (44) 

  
1t t t t tC f C i C−= +  (45) 

where it, ft, and ot represents the gates of input, forget and 

output respectively, W denotes the weight matrix and b 

denotes bias. Additionally, σ and tanh denote the sigmoid and 

tanh functions respectively. 

 

Figure 9. Diagram of a basic LSTM 

4.2. Deterioration Prediction Model 

Conventionally, a time series prediction model is designed to 

take a value to be predicted as an input. Figure 10 shows a 

schematic diagram of the LSTM model. The model mainly 

includes an input layer, an LSTM layer, and an output layer. 

This section is based on the Python deep learning framework 

Pytorch to construct a LSTM model, which includes a LSTM 

layer and a fully connected layer. Probability in Dropout 

layer is 0.2. The training hyperparameters mainly include the 

batch size (=6) of model update samples, the number of 

hidden units (=800), and the initial learning rate r0 (=0.001). 

The mean square error (MSE) is employed in the loss 

function to obtain the corresponding error value. Adam is 

utilized as the optimization function, which is a first-order 

optimization algorithm that replaces the traditional random 

gradient descent process. It can iteratively update the weights 

of the neural network based on training data, where the MSE 

value continuously decreases, achieving the training of the 

autoregressive prediction model. The autoregressive sliding 

window is selected for one-step prediction of deterioration 

indicators. For example, the first ten data for training, the 

11th data for prediction labels, the 2nd to 11th data for 

prediction of the 12th data, and so on, which continuously 

slides backwards for model training. The top 70% and 30% 

of datasets are used to trained and validate the models 

respectively, in order to judge the accuracy of the model 

prediction.  

 

Figure 10. LSTM neural network model structure 
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This article evaluates the prediction model using mean square 

error (MSE), which is employed to compare the measured 

data (yi) to model predictions (yi
’), as defined by: 

 

 

( )
2

'
n

i i

i

y y

MSE
n

−

=


 
(46) 

where n is the amount of data points in each dataset. The 

smaller the MSE, the smaller the difference between the 

predicted and true values. 

5. EXPERIMENTAL RESULT 

5.1. Data  

The sensor measurements from the real-time, on-line 

performance monitoring of gas turbines over a period of two 

months from September 1, 2009 to April 27, 2010 in the 

interval of 10min are used in this example to demonstrate the 

effectiveness of the proposed methodology. The parameters 

related to performance are shown in Table 2. 

5.2. Data Analysis 

According to the corrected value calculation introduced in 

Section 3, the thermodynamic SIMULINK model is utilized 

to calculate corrected performance. The deviation between 

design performance data and corrected value under ISO 

conditions is utilized to assess the performance degradation. 

The calculated corrected relative efficiency (ηcorrected/ηdesign) 

of the compressor and turbine is utilized to assess the 

degradation of the compressor and turbine, respectively. The 

trend of effective efficiency ηe of the unit reflects the 

degradation of the overall unit. The calculation results are 

shown in Table 3. 

5.3. Model Prediction  

The total number of complete datasets is 63325 after data 

preprocessing. The input datasets are divided into 70% 

training and 30% testing sets. The division is based on 

chronological order rather than randomization. The LSTM 

model is established to predict three evaluation indicators ηe, 

ηc and ηt. As an example, Figure 11 shows the comparison of 

the raw data and prediction results for the overall effective 

efficiency ηe of partial time series. In LSTM model, 50 time 

steps in future are predicted, which is shown as forecasted 

values Fig. 11. The multi-step prediction method constructs a 

model based on its previous values, once the number of 

prediction steps exceeds a certain threshold, the predicted 

values will gradually dominate over the measured values, 

leading to a deteriorating performance. 

5.4. Comparison Study  

The widely used NARX (nonlinear autoregressive with 

exogenous input) model is employed as another RNN model 

in this example for comparison purpose. The NARX model 

is defined as 

  ( ) ( 1),..., ( ), ( 1),..., ( )y uy t f y t y t n u t u t n = − − − − 
 (47) 

where y is the output variable and u is an exogenous input 

variable. The output signal y(t) is dependent on previous 

values of the output signal and previous values of an 

independent (exogenous) input signal x. The NARX model is 

mainly employed to model nonlinear dynamic systems. In 

addition, it can be used to predict the next value of the input 

signals. We use the NARX model described in Liu & Jiang 

(2022) to predict the GT performance degradation results. 

The number of neurons in the hidden layer is set to be 12 in 

this section. Each NARX model is trained with one hidden 

layer and tapped delay lines with two delays (1:2) both for 

inputs x(t) and output y(t). This means that the previous time-

steps are (t-1) and (t-2). Figure 12 shows the prediction 

results for overall effective efficiency ηe of partial time series 

based on NARX Model. 

 

 

Table 2. Performance parameters. 

Name  Description 

AFPAP Air Inlet Pressure 

CTIM Compressor Inlet Temp 

CTD Compressor Exhaust Temp 

CSGV Inlet Guidance Vane Angle 

AFQ Compressor Airflow 

DWATT Active Power Output 

DPF Generator Power Factor 

FQG Fuel Flow 

FTG Fuel Temperature 

TNH Turbo Speed 

TTXM Exhaust Temp 

AFPEP Exhaust Pressure Drop 

 

Table 3. Calculation results. 

No.  ηc ηt ηe 

1 0.980853 1.007787 0.358025 

2 0.980391 1.007877 0.357936 

3 0.979327 1.0079 0.35814 

4 0.977788 1.008501 0.358213 

5 0.97888 1.008244 0.358065 

6 0.980684 1.004558 0.356793 

7 0.981135 1.005707 0.357567 

8 0.980024 1.005231 0.355421 

9 0.97736 1.00402 0.352567 

10 0.970023 1.003782 0.351589 

… …    

63325 0.977831 0.998599 0.347 
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Figure 11. LSTM prediction result of partial time series 

 
Figure 12. NARX prediction result of partial time series 

5.5. Result Analysis  

Based on the model mentioned earlier, traditional LSTM 

models and NARX models are constructed to predict the 

performance degradation in a single step. The results show 

that the MSE obtained by traditional LSTM is 4.81e-7, while 

the MSE obtained by NARX is 5.86e-6. Compared to NARX, 

the MSE predicted by the traditional LSTM indicates the 

better curve fitting effect. 

6. CONCLUSION 

In this work, a new physics informed machine learning 

methodology to predict the degradation of gas turbine by 

seamlessly integrating thermodynamic heat balance 

mechanism, component characteristics, multi-source data 

and artificial neural network model. The followings findings 

are obtained: 

1. The mechanism-based thermodynamic model is 

established for multiple subsystems considering the 

balance of flow, mass and energy, and then integrated to 

a system level for performance simulation of the gas 

turbine under different conditions.  

2. In order to eliminate the impact of ambient conditions 

and dependency on operating point during the 

deterioration prediction, the corrected parameters are 

calculated by adjusting from actual operating conditions 

to rated conditions. An integrated procedure is proposed. 

The indicators which characterize performance 

degradation are also determined. 

3. A long short-term memory (LSTM) is established from 

the fusion of the actual and simulation data to predict the 

performance degradation of the gas turbine. A 

comparison study with the classical Nonlinear 

Autoregressive Network with External Input (NARX) 

neural network is conducted to demonstrate the 

advantage of the proposed method. 

Currently, the thermodynamic physical model's outcomes 

serve as inputs for machine learning such as LSTM and 

NARX prediction models. In future research, physics 

integrated machine learning model will be developed for 

perform degradation. 

NOMENCLATURE 

cp specific heat capacity 

k             ratio of specific heats 

f fuel-air ratio 

h enthalpy 

s entropy 

I             moment of Inertia 

M torque 

n            rotating speed 

dt time step 

T temperature 

P pressure 

G mass flow 

V voltage 

W           work 

π Pressure ratio or expansion ratio 

η            efficiency 

REFERENCES 

A.M.Y. Razak. (2007). Industrial Gas Turbines Performance 

and Operability. 

I. S. Diakunchak. (1992). Performance Deterioration in 

Industrial Gas Turbines. Journal of engineering for gas 

turbines and power, vol. 114 (2), pp. 161-168. 

Rowen, W. I. (1983). Simplified mathematical 

representations of heavy-duty gas turbines, Trans. 

ASME, J. Eng. Power, vol. 105, pp. 865-869. 

DeMello, F.P. (1994). Dynamic models for combined cycle 

plants in power system studies. IEEE Working Group on 

Prime mover and Energy supply models for system 

dynamic performance studies, IEEE Trans. Power Syst., 

vol. 9(3), pp. 1698-1708. 

Camporeale, S.M., Fotunato, B., & Mastrovito, M. (2006). A 

modular code for real time dynamic simulation of gas 

turbines in simulink. Trans. ASME, vol. 128, pp. 506-

516. 

Tsoutsanis, E. , & Meskin, N. (2019). Dynamic performance 

simulation and control of gas turbines used for hybrid 



Asia Pacific Conference of the Prognostics and Health Management Society 2023 

10 

gas/wind energy applications. Applied Thermal 

Engineering. vol. 147, pp.122-142. 

Kurosaki, M., Sasamoto, M., & Asaka, K., et al. (2018). An 

efficient transient simulation method for a volume 

dynamics model. ASME Turbo Expo: Turbomachinery 

Technical Conference and Exposition. V006T05A008. 

Bahlawan, H., & Morini, M., et al. (2018). Development of 

Reliable NARX Models of Gas Turbine Cold, Warm, 

and Hot Start-Up. Journal of Engineering for Gas 

Turbines and Power. vol. 140, pp. 071202-1-13. 

Liu, Z. M., & Karimi, I. A. (2020). Gas turbine performance 

prediction via machine learning. Energy, vol. 192, pp. 1-

10. 

 Asgari, H., & Chen, X. Q. (2018). Gas Turbines Modeling, 

Simulation, and Control Using Artificial Neural 

Networks. 

Kumar, V., Goswami, S., & Smith, D., et al. (2023). Real-

time prediction of multiple output states in diesel engines 

using a deep neural operator framework. 

Taniquchi H, Miyamae S. (2000). Power generation analysis 

for high temperature gas turbine in thermodynamic 

process. J. Propul. Power. 16: 557-561. 

M. Raissi, P. Perdikaris, G. E. Karniadakis. (2019). Physics-

informed neural networks: A deep learning framework 

for solving forward and inverse problems involving 

nonlinear partial differential equations. Journal of 

Computational Physics. vol. 378, pp.686-707. 

Goswami, S., Yin, M., Yu, Y., & Karniadakis, G. E. (2022). 

A physics-informed variational DeepONet for predicting 

crack path in quasi-brittle materials. Computer Methods 

in Applied Mechanics and Engineering. vol. 391, 

pp.114587. 

L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis. (2021). 

Learning nonlinear operators via DeepONet based on the 

universal approximation theorem of operators, Nature 

Machine Intelligence. vol. 3 (3), pp. 218–229. 

C. Lin, Z. Li, L. Lu, S. Cai, M. Maxey, G. E. Karniadakis. 

(2021). Operator learning for predicting multiscale 

bubble growth dynamics, The Journal of Chemical 

Physics. vol. 154 (10), pp. 104118. 

Y.Y. Liu & X.M. Jiang. (2022). Towards Predictive 

Maintenance of a Heavy-Duty Gas Turbine A New 

Hybrid Intelligent Methodology for Performance 

Simulation, Prognostic and Health Management PHM 

2022. DOI: 10.36001/phmconf.2022.v14i1.3148 

R, Yang & M.Y. Zhong. (2022). Machine Learning-Based 

Fault Diagnosis for Industrial Engineering Systems. 

CRC Press. 

M. de Castro-Cros, M. Velasco & C. Angulo. (2021). 

Machine-Learning-Based Condition Assessment of Gas 

Turbines—A Review. Energies, vol. 14, pp. 8468. 

https://doi.org/10.3390/en14248468 

Z. M. Liu & I. A. Karimi. (2020). Gas Turbine Performance 

Prediction via Machine Learning. Energy, vol.192, pp.1-

10. 

S. Hochreiter & J. Schmidhuber. (1997). Long short-term 

memory. Neural Comput., vol. 9(8), pp.1735–1780. 

P. J. Werbos. (1990). Backpropagation through time: What it 

does and how to do it. Proc. IEEE, vol. 78(10), pp. 1550–

1560. 

 

Yiyang Liu was born in Shenyang, 

Liaoning, China, in 1991. She 

received bachelor’s degrees in 

Automation and master's degree with 

a major in control engineering from 

Northeastern University, Shenyang, 

China. She is currently working 

toward the Ph.D degree in 

Mechanical from Dalian University 

of Technology, Liaoning, China. Her research interests 

include control engineering based on industrial process, 

artificial neural network, and fault diagnosis. 

Xiaomo Jiang received the M.S. 

degree in Structural Engineering from 

the National University of Singapore, 

Singapore, in 2000, and the Ph.D. 

degree in Intelligent Structures from 

The Ohio State University, 

Columbus, OH, USA, in 2005, 

respectively. He is currently a 

distinguished professor at the School 

of Energy and Power Engineering and 

State Key Laboratory of Structural Analysis, Optimization 

and CAE Software for Industrial Equipment, Director of 

Provincial Key Laboratory of Digital Twin for Industrial 

Equipment, and Director of Research Institute of Carbon 

Neutrality, Dalian University of Technology, Dalian, China. 

He was a senior engineer and technical leader in the 

monitoring, diagnostics, and prognostics of gas turbines and 

steam turbines with General Electric Company, Atlanta, GA, 

USA, from 2008 to 2017, and a Postdoctoral Research 

Associate with Vanderbilt University, Nashville, TN, USA, 

from 2005 to 2007. He has coauthored one book, five book 

chapters, and more than 100 research articles, and had over 

ten Europe and US patents in the cross-disciplinary fields of 

computer science, engineering, artificial intelligence, and 

applied statistics. He has been listed as one of the highly cited 

Chinese researchers in Mechanical Engineering by Elsevier 

since 2015 for 8 years in a row, and one of top 2% scientists 

by Stanford University. His main research interests include 

digital twin, smart maintenance, AI4Science, and predictive 

analytics for rotatory machines, such as gas turbines, steam 

turbines, and compressors. 



Asia Pacific Conference of the Prognostics and Health Management Society 2023 

11 

Ge Xin was born in 2000 in Heihe 

City, Heilongjiang Province, China. 

He received his bachelor's degree in 

Energy and Power Engineering from 

Northeastern Electric Power 

University in Jilin, China. He is 

currently pursuing his M.S. degree in 

Mechanical Engineering from Dalian 

University of Technology, Liaoning 

Province, China. His research interests 

include transient modeling based on gas turbines.  

 Manman Wei received her 

Bachelor's degree in Energy and 

Power Engineering from Shandong 

University of Technology in 2022. 

She is currently pursuing a Master's 

degree in Power Machinery and 

Engineering at Dalian University of 

Technology, China. Her research 

interests include uncertainty analysis, 

model verification and correction. 


