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ABSTRACT

In the machine learning and deep learning field, there are two
main kinds of tasks: classification and regression. The label
for the former is discrete, while for the latter is continuous.
Due to the big gaps in labels, these two tasks are generally re-
solved separately, bringing low training efficiency and waste
of computing resources. To this end, this paper proposes
a new labeling method based on fuzzy membership. The
main idea is to build an intermediate variable, which behaves
between continuous and discrete variables. Then, the rela-
tion between the intermediate variable and the discrete label
can be identified with fuzzy membership. Finally, the fuzzy
membership is adopted for building labels to train the source
model. After training, the source model can be transferred to
achieve both classification and regression tasks. To validate
the new labeling method, two typical tasks in the PHM field,
aging stage classification and RUL prediction, are selected
as the representative for classification and regression tasks,
respectively. Furthermore, LSTM with two dense layers is
chosen as the benchmark source model. With the C-MAPSS
dataset, the superiority of the proposed fuzzy-membership-
based labeling to improve the network’s task transfer learning
performance has been verified.

1. INTRODUCTION

In the data-driven PHM (predictive maintenance and health
management) field, classification and regression are two main
types of tasks. For the former, like fault classification (Zhao
et al. [2022]), degradation stage recognition (Alfeo et al.
[2022]), friction state identification (Mokhtari et al. [2020]),
et al.; for the latter, including RUL (remaining useful life)
prediction (Zhou et al. [2022]), wear loss estimation (Bote-
Garcia et al. [2020]), health index evaluation (Djurdjanovic et
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al. [2003]), and so on. Due to the output labels for classifica-
tion and regression tasks are different, one is limited discrete
values, like ”yes” and ”no” for with and without fault, or 1, 2,
and 3 standing for different fault positions, while the other is
unlimited continuous values, like the RUL ranging between
0 and 100%, these two tasks are solved separately, with one
model/network for one task. However, building and training
two separate deep networks for these two kinds of PHM is-
sues for one machine inevitably brings time consumption and
waste of computing resources (Liu et al. [2019]). Moreover,
in most cases, there is no sufficient data available to train such
two networks.

Essentially, both kinds of tasks evaluate the machine’s health
state and are inherently related. This enables transfer learning
to be a possible solution to this problem. Transfer learning
concerns transferring a network from the source domain to
the target domain (Weiss et al. [2016]). To date, the reported
research mainly concentrates on either the transfer learning of
one identical machine across different operating conditions,
the transfer learning among different machines, or the one
from the simulation model to a real machine, rarely address-
ing the transfer learning between different tasks (Lei et al.
[2020]; Ruan, Chen, et al. [2022]). As shown in Fig. 1(a),
for two tasks, task A and task B, at present, they are usu-
ally solved with two individual models. Task transfer learn-
ing aims to learn the knowledge shared by two tasks and then
leverage it from one task to another (see Fig. 1(b)). Different
from published research that focuses on structure develop-
ment or hyperparameter optimization to improve the source
model’s transfer performance, this paper focuses on the la-
beling improvement of the source model and proposes a new
task transfer learning framework with membership-based la-
beling. As demonstrated in Fig. 1(c), the main idea is to
introduce the membership from fuzzy logic to build new la-
bels, which behave between discrete and continuous vari-
ables. Then, the membership-based labels will be used to
train the source model. After that, the source model can be
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transferred to realize both classification and regression tasks.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the theory of fuzzy logic and membership
as well as the methodology of fuzzy-membership-based la-
beling. Section 3 details the C-MAPSS dataset, feature se-
lection, and two tasks preparation for task transfer learning.
Section 4 elaborates on the LSTM (long short-term memory)-
based source model and the construction of HI (health index).
Section 5 presents the results and analysis. Finally, Section 6
concludes the whole paper.

2. BACKGROUND THEORY

2.1. Fuzzy membership and membership function

In boolean logic, one variable belongs to a set or not, with a
probability of either 100% or 0. On the contrary, variables
in a fuzzy set belong to the set with a probability between 0
and 1. This probability is called membership degree and is
defined as follows.

Definition 1 A fuzzy set A in universe U means any element
u (u ∈ U ) has a corresponding number µA(u) (µA(u) ∈
[0, 1]), which is defined as the membership degree of u to A.
The mapping µA is called as the membership function. It can
be described as:

µA : U → [0, 1] ,

µ → µA(u) .
(1)

Since the fuzzy set was first proposed by L.A. Zadeh in 1965
(Zadeh [1996]), it has been widely used in control, image
processing et al. due to its superiority in describing the fuzzy
relation that boolean logic cannot resolve. Table 1 summa-
rizes the three main fuzzy membership functions (Mandal et
al. [2012]), and they will be used in this study.

Table 1. Three kinds of membership functions

Membership Formulation

Triangular µ(x) =



0, x ≤ a
x− a

b− a
, a ≤ x ≤ b

c− x

c− b
, b ≤ x ≤ c

0, x ≥ c

Trapezoidal µ(x) =



0, x ≤ a
x− a

b− a
, a ≤ x ≤ b

1, b ≤ x ≤ c

d− x

d− c
, c ≤ x ≤ d

0, x ≥ d

Gaussian µ(x) = e
− (x−µ)2

2σ2

2.2. Membership-based labeling for transfer learning

Fig. 2 shows a fuzzy set with two categories, and the member-
ship is characterized by a trapezoidal function. Any sample
xi belongs to either class A or/and class B, where µA(xi)
stands for the membership degree that the sample xi belongs
to class A, and µB(xi) stands for the membership degree
that the sample xi belongs to class B. In the following, the
membership-based labeling will be introduced based on this
fuzzy set. This paper proposes two different labeling meth-
ods: single-labeling and multi-labeling. The binary classi-
fication in Fig. 2 is taken as an example, and Algorithm 1
outlines the methodology.

A. Single-labeling method

In single-labeling, each sample has only one label. The mem-
bership degrees µA(xi) and µB(xi) are taken as probabilities.
When µA(xi) = 1, the sample xi is labeled as class A; if
0 < µA(xi) < 1, then the sample xi is labeled as class A
randomly with a probability of µA(xi). Likewise, the labels
for class B can be obtained.

B. Multi-labeling method

In multi-labeling, each sample corresponds to multi labels.
For example, in a binary classification, there are two label
values, including LA and LB for class A and B, respectively.
For any sample xi, its membership to class A and B is µA(xi)
and µB(xi), then, its corresponding multi-label is a vector
with two elements, namely, [µA(xi) × LA, µB(xi) × LB].
For classification tasks with more than two categories, it can
be resolved with the same procedure.

Algorithm 1 Labeling based on membership

Require: Sample set X , X = {x1, x2, · · · , xN}; Label
value set Y , Y = {LA, LB}; Labeling mode, 0 for
single-labeling, 1 for multi-labeling;
if Labeling mode = 0 then

if µA(xi) = 1 and µB(xi) = 0 then
Label sample xi as class A, Y (xi) = LA;

end if
if µA(xi) = 0 and µB(xi) = 1 then

Label sample xi as class B, Y (xi) = LB ;
end if
if µA(xi) = q, 0 < q < 1 then

Label sample xi as class A with probability q and
label sample xi as class B with probability 1− q;

end if
end if
if Labeling mode = 1 then

if µA(xi) = q, µB(xi) = 1− q then
Label sample xi with two labels, one is q × LA, the
other is (1− q)× LB ;

end if
end if

In the above methodology introduction, the variable X is as-
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Figure 1. Fuzzy membership-based framework for task transfer learning.

Figure 2. Diagram of membership-based labeling

sumed to have a fuzzy relation with the output label set. Once
such a variable exists, membership-based labeling can be fa-
cilitated. However, in most practical applications, such a vari-
able does not exist. Therefore, we should define a variable
that satisfies the requirement, which is termed the health in-
dex in this study. As outlined in Fig. 3, four main steps are
necessary to realize the membership-based labeling for task
transfer learning, including HI construction, HI distribution
analysis, membership function identification, and labeling. In
the following, the implementation details will be introduced.

3. DATASET AND TASKS FOR TRANSFER LEARNING

3.1. Introduction of experimental setup and dataset

The C-MAPSS dataset is used for validation in this study,
which is collected from a high-fidelity aero-engine simula-
tor provided by NASA. Fig. 4 shows the simplified diagram
of the engine (D. Frederick & Litt [2007]). Different operat-
ing conditions and fault modes are defined in the simulation
model to generate degradation data over cycles. These data
are saved in four sub-datasets, as presented in Table 2. Each
sub-dataset contains a training set, a test set, and a real RUL

set, which is used to verify the corresponding test set.

Table 2. C-MAPSS Dataset

Dataset FD001 FD002 FD003 FD004
Train Trajectories 100 260 100 249
Test Trajectories 100 259 100 248
Conditions 1 6 1 6
Fault Modes 1 1 2 2

The raw data representing the engine status is recorded as
a L × S matrix, where each row in the matrix stands for a
cycle, and each column represents an attribute that identifies
the engine status. As illustrated in Table 3, there are a total of
26 columns, namely S = 26, where the 1st column is engine
ID, the 2nd one represents current cycle number, the 3rd-5th
columns are three parameters characterizing engine operating
condition, the 6th-26th columns represent 21 sensor values,
but the information about the sensor and measured variable
is not accessible. Initially, the engine works normally and
gradually grows into failure over running cycles. The service
life of each engine varies from each other, which means the
L differs among engines.

3.2. Data preprocessing and feature extraction

Though 21 sensor data are collected for each engine at ev-
ery cycle, not all the sensor data contain useful information
for engine fault diagnosis. As shown in Fig. 5, four sensor
signals are randomly selected. We can find that sensor 1 and
sensor 9 do not have much obvious tendency, while sensor 12
and 13 shows an overall exponential changing trend, which
agrees with the aging process of the engine. Therefore, this
study adopts two metrics to select appropriate sensor data for
further diagnostic issues, including monotonicity and corre-
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(b) step 2: HI distribution analysis(a) step 1: HI construction (c) step 3: Membership function (d) step 4: Labeling

Table: Example of single-label

Figure 3. Flowchart of designing a membership function

Table 3. Data of #1 engine in FD001 training set

ID Cycle Condition 1 Condition 2 Condition 2 Sensor 1 Sensor 2 · · · Sensor 21
1 1 -0.007 -0.004 100 518.67 641.82 · · · 23.4190
1 2 0.0019 -0.0003 100 518.67 624.15 · · · 23.4236
1 3 -0.0043 0.0003 100 518.67 642.35 · · · 23.3442
...

...
...

...
...

...
...

...
1 192 0.0009 0 100 518.67 643.54 · · · 22.964

Figure 4. The engine test bench (D. Frederick & Litt [2007]).

lation with RUL (Ruan, Wu, et al. [2022]). With both metrics
considered, eight sensors like 2, 3, 4, 7, 11, 12, 14, and 15 are
determined. Additionally, to generate sufficient training data,
a sliding window is used for data segmentation. As illustrated
in Fig. 6, each sample contains 30 cycles with selected fea-
tures, and the step size of the sliding window is defined as 3.

Figure 5. Four signals from sensors

Figure 6. Data segmentation with time window

3.3. Two tasks for transfer learning validation

The purpose of this study is to explore fuzzy-membership-
based labeling for task transfer learning. Therefore, two dif-
ferent tasks should be defined, including one of regression
type and the other of classification type. For the former, the
RUL prediction of the engine is naturally a regression task,
while there is no ready classification task for the latter. Thus,
this study will build a classification task based on the aging
stage estimation. More details about the two tasks will be
elaborated on in this section. As the input of two tasks is the
same, the focus will be laid on the output labels.

A. Regression task: RUL prediction

The regression-type task is defined as RUL prediction. The
output label is thereby the RUL values, which are defined as:

RULj
i = max{mj − aji , 130} , (2)

where RULj
i stands for the i-th sample of the j-th engine. mj

indicates the whole life-cycle of the j-th engine. aji means the
final cycle of the i-th sample for the j-th engine. The maxi-
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mum RUL limit of 130 is defined due to that engine degrada-
tion in the early period is not obvious (Heimes [2008]).

B. Classification task: aging stage classification

Since the information about each engine failure is not given,
labeling the samples with fault classes is not practical. Thus,
the aging stage classification is defined as a substitute and
taken as a representative fault diagnosis task (Ramasso &
Saxena [2014]). To achieve this, the rows in the status-
recording matrix of each engine are arranged in descending
order of the operation cycle. Afterward, the first 20% data
in the recordings are considered as failure phase and labeled
with 2, the middle 20%-50% data are taken as degradation
phase and labeled with 1, and the last 50% data are regarded
as normal phase and labeled with 0. The labeling of the clas-
sification task is given in Table 4.

Table 4. Labels for degradation status

Cycle 0 - 50% 50% - 80% 80% - 100%
Label 0 1 2

4. SOURCE MODEL AND HI CONSTRUCTION

4.1. Source model structure and hyperparameters

LSTM is adopted to build the source model for task transfer
learning. Fig. 7(a) shows the model architecture, where two
LSTM layers are stacked for feature extraction and followed
by two dense layers. The first LSTM layer has 32 LSTM
cells, and the second one has 64 LSTM cells, while both
dense layers have 16 neurons. Fig. 7(b) presents the structure
of an LSTM cell. The dropout and recurrent dropout tech-
niques are used in both LSTM layers to resolve overfitting,
and Tanh is selected as the activation function. Regarding
the last layer, when the model is used for RUL prediction,
one neuron is adopted, while for the source model training or
aging stage classification, a softmax activation function will
be involved instead. In addition, the hyperparameters of the
source model are optimized by the particle swarm optimiza-
tion (PSO) (Ruan et al. [2021]).

4.2. Health index construction

As analyzed in the introduction, the precondition to achieve
membership-based labeling is to build an intermediate vari-
able that has a fuzzy membership relation with the discrete
label set. Nevertheless, there is no readily available variable
that meets the requirement. This paper achieves this by build-
ing a health index based on the linear weighting of features.
Firstly, an initial health index is defined as Eqs. (3) and (4),
where xall represents the selected and normalized features of
all data from each dataset. HIinitial is defined as the propor-

tion of current cycle i to its whole life cycles RULmax.

HIinitial = ωTxall + b (3)

HIinitial(i) = 1− i

RULmax
(4)

To identify the parameters ω and b, a linear regression model
from the feature vector xall to HIinitial is fitted for each
dataset. After training, the values of ω and b are determined
and then substituted into Eq. (5) to obtain the HI curve for
each engine, here xi denotes the feature vector of the i-th
engine, and HIi stands for its reconstructed HI values.

HIi = ωTxi + b (5)

Fig. 8 shows the trajectories of constructed HI from the en-
gines in FD34 over cycles, which is a combination of FD003
and FD004. We can find that constructed HI shows good
monotonicity. When the HI reduces from 1 to 0, it presents an
exponential changing trend, which agrees well with the aero
engine’s degradation process.

4.3. Membership function identification for HI and appli-
cation in labeling

After building the HI, the next step is to identify a member-
ship function characterizing the relation between HI and dis-
crete labels through the HI histogram distribution analysis.
Fig. 9 shows the histogram of HI values from all the sam-
ples in FD34. We can find that, on the one hand, the HI val-
ues are separated enough, which can obviously be grouped
into three categories, corresponding to normal, degradation,
and failure three stages. On the other hand, there exists
overlapping between any two adjacent groups, indicating the
HI values are continuous. In short, the constructed HI be-
haves as both discrete and continuous variables, which sat-
isfies the requirement for the intermediate variable from the
membership-based labeling.

Fig. 9 confirms the fuzzy-logic relation between the HI values
and the classification task labels. For example, when the HI
is smaller than 0.4, it belongs absolutely to the failure stage,
while HI is between 0.5 and 0.7, it belongs to both the failure
and degradation stages but with different probabilities. To ac-
curately describe the fuzzy relation, the membership function
can be applied. For example, we can use the Gaussian mem-
bership function to fitting the HI histogram distribution. Table
5 summarizes the identified mean and standard deviation of
Gaussian membership functions. With the same method, the
parameters of triangular and trapezoidal membership func-
tions, when fitting with them, can also be obtained (Ruan,
Wu, et al. [2022]).
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(a) Structure of source model (b) LSTM Cell

Figure 7. Source model structure for task transfer learning

Figure 8. HI trajectory (Ruan, Wu, et al. [2022])

Figure 9. HI distribution under dataset FD34 (Ruan, Wu, et
al. [2022])

Table 5. Statistic results of HI in dataset FD34

Status Label Mean Standard deviation
Normal 0 0.90 0.05
Degradation 1 0.73 0.10
Failure 2 0.36 0.14

5. RESULTS AND DISCUSSION

To validate the proposed method, experimental data from the
C-MAPSS dataset are applied. Firstly, the performance of the

RUL prediction task is summarized in Table 6, where RMSE
(root mean square error) is taken as the evaluation metric.
We can find that the proposed method brings smaller RMSE
compared with MLP, SVR, RVR, and CNN. Regarding the
comparison between single-labeling and multi-labeling, takes
the triangular membership as an example, the former per-
forms better in FD002 and FD004 while the latter in FD001
and FD003, which means the single-labeling based source
model has stronger adaptability across different working con-
ditions and fault modes. As to the Gaussian membership
function, single-labeling works better than multi-labeling on
all four sub-datasets except FD002. When the source model
is trained with trapezoidal membership-based labels, single-
labeling outweighs multi-labeling in all cases. This confirms
that single-labeling is better than multi-labeling when ad-
dressing task transfer learning.

After that, the different models are transferred to tackle
the fault classification task. Compared with direct transfer
learning (”RUL2Classification”), all the models trained with
membership-based labels achieve higher accuracy among
four cases, which confirms the effectiveness of the proposed
transfer learning framework. In addition, based on the com-
parison between multi-labeling and single-labeling, we can
find that single labeling with trapezoidal membership per-
forms better, further validating the superiority of the single-
labeling method.

6. CONCLUSION

In the data-driven fault diagnosis field, there are two main
classes of issues. One is the classification-type task, like fault
classification, aging stage identification, and friction state de-
termination, where the output labels are limited and discrete
values. The other is the regression-type task, such as RUL
prediction, wear loss estimation, and health index evalua-
tion, where the output labels are continuous values. In pre-
vious research, these two tasks are resolved separately. In
this study, the transfer learning between these two different
issues is termed task transfer learning. A new framework for
task transfer learning is proposed by introducing a new fuzzy
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Table 6. RMSE comparison of different source models for
RUL prediction

Membership function FD001 FD002 FD003 FD004
MLP 37.56 80.03 37.39 77.37
SVR 20.96 42.00 21.05 45.35
RVR 23.80 31.30 22.37 34.34
CNN 18.45 30.29 19.82 29.16
Triangular 17.44 24.95 20.41 29.76
Gaussian 15.87 26.39 19.14 29.82
Trapezoidal (10%) 16.04 25.49 20.00 29.95
Trapezoidal (20%) 17.50 25.86 19.02 31.47
Trapezoidal (25%) 15.97 25.70 21.61 30.43
Trapezoidal (30%) 17.23 26.42 21.19 30.17
Trapezoidal (15%) 15.80 25.73 18.34 30.40
Multi-label (triangular) 15.86 25.98 20.18 31.44
Multi-label (Gaussian) 16.72 26.20 19.89 31.61
Multi-label (trapezoidal) 16.55 26.95 20.28 33.87

Table 7. Transfer learning performance comparison

Method FD001 FD002 FD003 FD004
RUL2Classification 0.90 0.73 0.86 0.66
Multi-label (triangular) 0.91 0.76 0.92 0.72
Multi-label (Gaussian) 0.91 0.77 0.91 0.72
Multi-label (trapezoidal) 0.90 0.75 0.89 0.72
Trapezoidal (15%) 0.91 0.78 0.92 0.72

membership-based labeling method. With the new labels,
which behave between continuous and discrete variables, the
source model can be trained to extract features for both clas-
sification and regression tasks. The C-MAPSS dataset of the
aero engine is applied for validation, with two tasks con-
structed, one for aging stage classification and the other for
RUL prediction. Experimental results confirm the feasibility
and superiority of the proposed framework for task transfer
learning.
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