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ABSTRACT 

Future spacecrafts require robust operations for long-term 

missions to the Moon or Mars. Automatic anomaly detection 

with machine learning, in this context, plays a significant role 

because it enables early symptom detection and proactive 

redundant switching which preserves components in the long 

mission. In this research, we adopted Light GBM, one of the 

machine learning models, to investigate such anomaly. We 

especially focused on the telemetry data of propulsion system 

of H-II Transfer Vehicle (HTV) to resolve typical problems 

of deep-space mission spacecrafts, a thruster failure. The data 

was collected from multiple types of thruster maneuvers 

performed at simulator training. The results showed the 

effectiveness of the proposed method.  

1. INTRODUCTION 

Deep space mission spacecrafts require robust architecture of 

systems to support long-term operations. One of key devices 

for long-term mission is a thruster. Modern spacecrafts’ 

thrusters are mounted in canted angles to allow multiple 

thrusters to control a single axis while a single thruster can 

also control multiple axis. With this design, total numbers of 

thrusters can be significantly reduced because loss of a single 

thruster can be compensated by other thrusters. However, due 

to its complex interdependency, it is difficult to identify 

which thruster has failed. To support deep space exploration 

missions, we propose a method of anomaly detections to 

identify failed thrusters and reconfiguration of thruster 

arrangements for continuous operations.   

2. ANOMALY DETECTION OF PROPULSION SYSTEMS 

Several data-driven monitoring techniques for propulsion 

systems have been developed in aerospace (Hayton et al., 

2007, Schwabacher et al., 2009, Iverson et al., 2012). Hayton 

(2007) proposed static and dynamic novelty detection 

methods to detect anomalous behavior in a jet engine. 

However, those research focus on anomaly detections in 

subsystem level rather than in component level. So, with 

these methodologies, it is hard to identify a single failed 

thruster. In this research, we developed a method to detect 

anomalies for individual thrusters using specific telemetries 

of propulsion system.  

3. METHODOLOGY 

We propose a methodology to detect faults for individual 

thruster utilizing the data of thruster duty with a machine 

learning-based method. We visualized the analysis results 

with heatmap as an effective Human-Machine Interface 

(HMI). 

3.1. Data 

HTV has fourteen Reaction Control System (RCS) thrusters 

and two Main Engines (ME) per two strings. One of possible 

anomalies is a failure of RCS thruster. Data of thruster duty 

of RCS #1-24 for some maneuvers were selected based on 

the interviews with specialists.  

3.2. Algorithm of anomaly detection 

Learning-based model for anomaly detection was utilized. 

We selected a classification method as there are sufficient 

data for both normal and abnormal states. We applied Light 

GBM, which was proposed by Ke et al. (2017) and one of 

novel Gradient Boosting Decision Tree (GBDT) algorithms 

to deal with large number of data and features. We used the 
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library of lgb in python. Accuracy was calculated from 

classification results of test data to verify the effectiveness of 

the proposed method.  

3.3. Visualizing results for Human-Machine Interface 

(HMI) 

Lastly, we visualized the degree of incidences of each RCS 

by heatmaps. Rasmussen (1983) pointed out that human 

operators generally obtain qualitative models of their 

operating systems, ongoing tasks, or situations and utilize 

them for effective operations. Moreover, the qualitative 

models are constructed based on a variety of information 

quantitative data. There is therefore a conversion process of 

the quantitative data into qualitative models, and one of the 

major challenges of the Human Machine Interface (HMI) 

design is said to be how to reduce work/cognitive load of the 

conversion process of human operators. In this respect, the 

qualitative models or representations should be regarded as 

important as quantitative representations, and that is why the 

heatmap representation of the degree of incidences for each 

RCS was adopted in this analysis. 

The heatmap represents how each RCS contributed to the 

anomaly events. The degree of incidences as quantitative data 

is converted into heatmaps as qualitative representations, 

which could reduce the work/cognitive load of the 

co1nversion process by the human operators. The heatmap 

representations are consequently expected to provide 

multiple telemetries from systemic view and support intuitive 

situational awareness of the human operators. 

4. EXPERIMENTAL RESULTS 

To verify the proposed method, telemetry data during 

simulations for H-II Transfer Vehicle (HTV) was utilized. 

There are several maneuvers to approach the International 

Space Station (ISS). We collected the data of RCS including 

anomaly data for some maneuvers during HTV simulations. 

There are two types of maneuvers: x and z translation. Then 

the data was split into training and test data. Figure 1shows 

HTV flight profile. Table 1 shows the numbers of data for an 

experiment. The numbers of data in normal and abnormal 

during each maneuver were set to same for training data. We 

used model of HAM0 for testing the data of HAM2 as they 

have similar characteristics for maneuvers. 

 

Table 1. Number of data for training and test. 

Training 

Maneuver type normal abnormal 

HAM0 98 98 

HAM2 - - 

T1 53 53 

RI’ 123 123 

Test 

Maneuver type normal abnormal 

HAM0 10 105 

HAM2 202 - 

T1 10 15 

RI’ 20 238 

 

4.1. Results of classification 

Firstly, we trained classification models of Light GBM for 

each maneuver type with training data. We set a hyper-

parameter of the number of trees in Light GBM to 100. Then 

we performed classification for test data. Accuracy was 

calculated with the numbers of data, classified correctly, 

divided by total numbers of data. The numbers of data and 

accuracy for each maneuver are shown in Table 2. Accuracy 

of maneuvers in x translation were more than 77 % while one 

of RI’ maneuver was 69%. 

 

 

 

  

(a) Flight profile until Approach Initiation (AI) point. (b) Flight profile after Approach Initiation (AI) point. 

Figure 1. Flight profiles of HTV (Hotta et al., 2012) 
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Table 2. Classification results for test data. 

Maneuver type Correct All Accuracy 

HAM0 89 115 77% 

T1 20 25 80% 

HAM2 (4/19) 66 66 100% 

HAM2 (8/2) 68 68 100% 

HAM2 (8/23) 67 68 99% 

RI’ 178 258 69% 

 

4.2. Improving accuracy with tuning number of trees 

The number of trees in Light GBM affects accuracy of 

classification results. To improve the accuracy of 

classification models, hyper-parameter of the number of trees 

was adjusted based on a learning curve. The number of trees 

were optimized for each type of maneuvers. Table 3 shows 

the improved results with number of trees. 

 

Table 3. Analysis results after tunings hyper-parameter. 

Maneuver type Correct All Accuracy 

(N=number of trees) 

HAM0 90 115 77% (N=50) 

T1 20 25 80% (N=30) 

HAM2 (4/19) 66 66 100% (N=70) 

HAM2 (8/2) 68 68 100% (N=70) 

HAM2 (8/23) 68 68 100% (N=70) 

RI’ 178 258 69% (N=100) 

 

HAM2 maneuvers had 100% accuracy while results of 

HAM0 and T1 are around 80%. Result of RI’ was little bit 

lower with 69%.  

HAM2 had test data including only normal data. Therefore, 

the trained model from the data of HAM0 seems to have 

characteristics of high accurate classification for normal data. 

As for the result of RI’ maneuver, the accuracy was not high 

because the numbers of data in z transition maneuver was 

limited. 

4.3. Visualizing degree of incidence with heat map 

Incidence for each RCS was calculated with feature 

importance. We used the library of lgb. Then, we visualized 

the degree of incidences for each RCS with heatmaps as 

shown in Figure 2-5. Rotation direction is in vertical axis and 

RCS number is in horizontal axis. Deeper red highlighted 

RCS had higher impacts for classifications for each model.  

As an instance, heat map of HAM 2 model showed deep red 

in RCS #1-3 in the roll direction. It implies that the faults of 

RCS affected the performance of RCS in role direction. The 

results of HAM0 and T1 showed similar trends while one of 

RI’ had different effect for RCS in pitch direction. This is 

because RI’ maneuver is in z translation. 

 

Figure 2. Heat map for HAM0. 

 

Figure 3. Heat map for HAM2. 

 

Figure 4. Heat map for T1. 

 

Figure 5. Heat map for RI’. 
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5. DISCUSSIONS 

5.1. Improving models 

In this research, we could use only limited data of training 

and testing. Especially, z translation maneuvers such as RI’ 

maneuvers could not be learned sufficiently due to limited 

numbers of simulations. To improve the accuracy of 

classification model, more data are required for both training 

and testing. For further analysis, we will use simulators for 

generating more data with more various settings for thruster 

faults scenarios. Another way to improve accuracy is utilizing 

other anomaly detection methods such as regression or time-

series models. It is necessary to investigate which types of 

algorithms are effective for the system. 

5.2. Operational Support by Effective Human-

Machine Interface (HMI) 

The dynamics of the future spacecrafts are assumed to be 

more complex compared to the current ones due to the new 

configuration of thrusters. While the new configuration of 

thrusters enables the resilient operations, the complexity 

could make it difficult for ground controllers to obtain 

situational awareness and response to anomaly events. One 

possible way to overcome this problem is to design an 

effective Human-Machine Interface (HMI) providing 

information about how to reconfigure the thruster system as 

a whole, and in this context, the heatmap representations 

shown in the previous section is one of the effective ways to 

provide systemic comprehension of the current systems’ state. 

6. CONCLUSION 

Future spacecrafts require robust operations of propulsion 

systems for longer missions. We proposed the method of 

machine learning-based anomaly detection of RCS thrusters 

with telemetries of duty utilizing Light GBM. We verified the 

method with the data of RCS thrusters during maneuvers in 

some of HTV8 simulations. More data and failure scenarios 

are required to improve the accuracy of classification model. 

Our proposed method provided supportive criteria to identify 

the failure. Specifically, the heatmap representations enable 

the human controllers to notice the signs of failure intuitively, 

which could contribute to the early responses by the operators. 
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