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ABSTRACT 

We propose an algorithm for estimating the wear condition 

of tools. We have previously developed a method for 

predicting machining dimensions by learning features of 

waveform shapes such as torque during machining as 

explanatory variables and measured machining dimensions 

as objective variables. In this method, the features do not 

fully explain the machining dimensions because including 

data other than the machining operation such as tool change. 

In this paper, we propose a method to improve explanatory 

power and prediction accuracy by selecting subsequences 

from the machining waveform that are highly related to 

machining dimensions as explanatory variables. The 

effectiveness of the proposed method was confirmed 

through an evaluation using data of machining product part. 

1. INTRODUCTION 

In factory automation (FA) manufacturing lines, many 

machine tools are in operation to process workpieces. NC 

(numerical control) machine tools are machines that use NC 

machining methods to machine the workpiece. However, 

due to fluctuations and deterioration in the condition of the 

machine equipment and tools, as well as fluctuations in the 

work environment, deviations may occur between the 

designed dimensions and the actual dimensions of the 

workpiece. To confirm whether the machined workpiece 

dimensions are within the tolerance range or not, the 

dimensions of the workpiece should be inspected after 

machining, but it is difficult and time-consuming to conduct 

a full inspection. Therefore, a technology for estimating and 

predicting machining dimensions has been proposed. 

Conventionally, there is a technology that extracts feature 

values from machine tool drive condition information 

collected in a predefined machining section, and generates a 

prediction model for predicting machining dimensions from 

these feature values by multiple regression. Using this 

prediction model, it is possible to determine the machining 

quality or to diagnose that the machining was normal, even 

if the machining dimensions are not measured after 

machining. However, the conventional method uses the 

entire waveform during machining as explanatory variables, 

whereas dimensional measurements are taken only at certain 

points of the product, making it impossible to explain which 

of the feature values affect machining quality. Therefore, we 

developed a method to improve the accuracy of machining 

dimension prediction [2]. In the developed method, the 

machining waveform is divided into time series, and 

intervals with high correlation to the machining dimensions 

are selected as explanatory variables. We also used a 

gradient boosting tree, which is less susceptible to 

multicollinearity, as the prediction model, and improved the 

prediction accuracy by using features with high importance 

as explanatory variables. Evaluation using test data 

confirmed that the prediction accuracy was improved 

compared to the conventional method. 

Section 2 describes the conventional techniques for tool 

wear diagnosis of machine tools and machine tools, Section 

3 describes the proposed algorithm, Section 4 describes the 

experimental results, and Section 5 provides a summary. 

 

2. BACKGROUND AND RELATED WORKS 

2.1. Machin Tool Wear 

In factory automation (FA) manufacturing lines, many 

machine tools are in operation to process workpieces. Many 

of these machine tools are automated, and among them, NC 

(numerical control) machine tools are machine tools that use 

NC machining methods to process the workpiece. NC 

machine tools, such as milling machines, lathes, drilling 

machines, machining centers, and turning centers, can 

precisely machine metals using tools by executing 

predefined NC control programs. The tools are, for example, 

end mills, face mills or drills, taps, and inserts, and the 

machining is, for example, cutting, abrasive grinding, or 

cutting. 
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Figures 1 and 2 show an example of machining on metal. 

in Figure 1, the machine tool cuts the metal by bringing the 

tool, an end mill, into contact with it as indicated by the 

arrow to form a spiral-shaped airfoil. In detail, the machine 

tool moves the tool in the direction indicated by the right 

arrow in Figure 2 to form the surface A, indicated by the 

bold line and then forms surface B, indicated by the dashed 

line, by moving the tool in the direction indicated by the 

dashed arrow. The metal processed in this way is used as a 

component of a scroll compressor. Since the blades of scroll 

compressors are required to be highly precise, the estimated 

prediction of the dimensions during such machining must be 

accurate. 

 

Figure 1. Endmill and Metal material 

 

 

Figure 2. Examples of metal processing 

 

2.2. Conventional Method 

Machine tools may have deviations between the design 

dimensions and the actual dimensions of the workpiece to 

be machined due to fluctuations and deterioration in the 

condition of the machine equipment and tools, changes in 

the work environment, and other factors. Therefore, it is 

necessary to check whether the dimensions of the processed 

workpiece are within the allowable range or not. Although it 

is desirable to inspect all the dimensions of the workpiece 

after machining, this is not realistic due to the time and 

monetary costs involved. Therefore, there is a need for a 

technology to estimate and predict machining dimensions. 

As a conventional technology for predicting machining 

dimensions, a method has been proposed in which a 

prediction model such as a multiple regression model is 

learned in advance using the waveform shape of sensor data 

such as torque during machining quantified as a feature as 

the explanatory variable and the actual measured value of 

machining dimensions as the objective variable. In this 

method, the learned prediction model is used to predict the 

machining dimensions for each actual machining operation. 

This makes it possible to determine the machining quality 

and diagnose that the machining was normal, even if the 

machining dimensions are not measured after machining. 

Furthermore, since the degree of tool wear (number of times 

the tool has been used) is related to the dimensions of the 

non-machined workpiece, accurate prediction of the 

dimensions of the non-machined workpiece can provide a 

clue to the tool wear condition. 

In the conventional method, the feature values are calculated 

from the sensor data of the entire machining section and 

learned, while the machining dimensions used in the 

training data are measured at only one location in the 

workpiece. However, because the entire machining section 

includes data other than machining operations (tool 

movement, tool change, etc.), the feature values do not fully 

explain the machining at the measurement point. In the case 

of straight grooving, where the actual cutting tool cut is 

constant and the groove width formed by cutting is uniform, 

the error between the predicted machining dimensions and 

the actual measured dimensions is small. However, in the 

case of curve machining and partial machining, the amount 

of cutting is not uniform depending on the cutting tool 

contact angle to the machining surface and the NC curve 

interpolation control performance, and the feature values in 

the machining section do not necessarily provide enough 

data to fully explain the actual dimensions. Therefore, when 

a prediction model that predicts machining dimensions from 

the aforementioned feature values is learned, the error in the 

machining dimensions predicted by this prediction model 

may be large. Therefore, there is room for more accurate 

estimation and prediction of the dimensions of the 

workpiece machined by the machine tool. 

3. ALGORITHM 

This chapter describes an algorithm that aims to more 

accurately estimate and predict the dimensions of a 

workpiece machined by a machine tool from the machining 

data. 

The process flow of the algorithm is shown in Figure 3. 

First, a data interval selection process is performed to select 

intervals from the already obtained machining data that have 

a strong correlation with the machining results contained in 

the measurement data (weakly correlated intervals = noise 

portions are removed). Then, feature selection is performed 

to obtain feature values (statistics such as mean and median 

values) from the data in the selected intervals. Finally, the 

contribution to the prediction result (importance) is 

calculated from the obtained feature values, and the feature 

Endmill 

Metal material 
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values with the highest importance are used as the final 

feature values to construct a prediction model (LightGBM). 

By inputting machining data of unknown quality into the 

constructed prediction model, it is possible to predict the 

machining workmanship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Process flow of the machining workmanship 

prediction algorithm 

3.1. Section Selection Method 

In addition to the data during excavation, the processing 

data includes data during the period when the excavator 

blade is being replaced, and there is a mixture of sections 

that are related to the processing performance (measurement 

data) and sections that are not. Since the information in the 

sections unrelated to the measurement data is noise in 

predicting the processing quality, we can expect to improve 

the prediction accuracy by extracting only the sections 

related to the measurement data from the processing data 

and cleansing the data. In addition, when calculating the 

correlation coefficient between the processed data and the 

measurement data, not only the raw values of the processed 

data but also various statistics (e.g., average values) are used. 

Since there are intervals in the processed data that are 

related to the measurement data and intervals that are not, 

the processed data are separated by specifying the window 

width, and the correlation coefficients between the statistics 

calculated from the separated intervals and the measurement 

data are calculated. After the correlation coefficient is 

calculated, the window width is moved, and the correlation 

coefficient is calculated again at the position where the 

window width was moved. By repeating this process from 

the beginning to the end of the processed data, the transition 

of the correlation coefficient of the window width section in 

the entire processed data can be calculated. Finally, by 

extracting only the intervals with high correlation 

coefficients, i.e., the intervals that are related to the 

measurement data, the noisy portions can be removed, 

which is expected to improve the prediction accuracy. 

3.2. Feature selection method 

In the conventional method, the statistic with the highest 

correlation coefficient was used as the feature, but this time, 

the statistic with the highest feature importance in the 

forecast model was selected. 

3.3. Prediction model 

For this development, we chose LightGBM[1] , a type of 

gradient boosting tree that is computationally inexpensive 

and has high memory efficiency and prediction accuracy. As 

explained in 3.2, feature selection is performed using 

importance. 

4. PERFORMANCE EVALUATION 

4.1. Dataset 

Data obtained during the machining of scroll compressor 

parts were used in this evaluation. The data included from 

several time-series data and included the load and speed of 

the tool spindle and the load of each of the axes 1/axis 

2/axis 3/axis 4 (CH1-6) Figure 4 shows an example of the 

data.

 

Figure 4. Waveform of processed data (excerpt of one data) 

For the measurement data, which is the objective variable, 

the squareness and straightness of a certain point on the 

workpiece after cutting were measured with a measuring 

machine. In this case, straightness, which has the highest 

correlation with the number of times the tool has been used 

(degree of wear), was used as the objective variable.  

4.2. Evaluation of Section Selection Method 

Figure 5 shows an example of the correlation coefficient 

calculation results. The red dashed line is the correlation 

coefficient between the statistic calculated from the entire 

processed data and the measurement data. It can be 

confirmed that the correlation coefficient with the 

measurement data increases or decreases depending on the 

Processed Data 

(Past data) 

Data section 

selection 

Feature selection 

Predictive results of 
machining 

workmanship 

Predictive model 
(LightGBM) 

Processed Data 

(New data) 
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section where the statistic is calculated, and that there are 

sections in the processed data that are related to the 

measurement data and sections that are not. 

 

Figure 5. Transition of correlation coefficients (excerpts) 

The threshold value of the correlation coefficient for 

interval selection was set to a value that would not shorten 

the extraction interval and would leave the part of the data 

where the metal was actually being processed. 

Table 5 summarizes the changes in the correlation 

coefficients between the processed and measured data after 

cleansing. The correlation coefficients for all statistics 

improved after cleansing, and the average correlation 

coefficient for each statistic improved by 0.292. It is thought 

that the cleansing process improved the correlation with the 

measurement data by extracting only the parts of the metal 

that are actually processed, i.e., the parts that are related to 

the measurement data. 

Table  5. Correlation coefficient before and after 

cleansing 

 
Average of all 

correlation coefficients 

Before cleansing 0.263 

After cleansing 0.555 

4.3. Evaluation of Prediction Accuracy 

Next, we discuss the experimental results of the prediction 

accuracy. As explanatory variables, we used features with a 

given threshold anomaly in LightGBM importance. The 

prediction results are shown in Table 6. Absolute mean error 

(MAE) and absolute mean error rate (MAPE) were used as 

accuracy indices. With the conventional method, the MAE 

was 0.000954 mm and the MAPE was 33.6%. With the 

newly developed method, the MAE was 0.000404 mm and 

the MAPE was 16.4%, confirming an improvement in 

accuracy. This may be due to the fact that, as a result of 

cleansing, data not relevant to processing was removed, 

improving the correlation coefficient and, consequently, the 

accuracy. 

Table 6. Prediction Results 

  
Conventional method Proposal method 

MAE MAPE MAE MAPE 

Target 0.000954 33.6 0.000404 16.4 

5. CONCLUSION 

In this study, we examined an algorithm to analyze 

machining and measurement data, select intervals, and 

predict with high accuracy. In order to extract intervals that 

have a high relationship with machining dimensions, we 

divided machining data into multiple window lengths and 

calculated correlation coefficients with machining 

dimensions by combining window lengths and multiple 

characteristic quantities (e.g., averages and other statistics). 

We confirmed that the correlation coefficients actually 

varied depending on the section. Therefore, this time, 

intervals with correlation coefficients above a certain level 

were extracted, and statistics of high importance were 

extracted as candidates for explanatory variables. In 

addition, a gradient boosting tree was selected as the 

forecasting method. As a result of confirming the accuracy 

of the conventional method and the study method, we 

confirmed that the use of the study method improved the 

correlation coefficient by an average of 0.292 and the 

absolute mean error rate (MAPE) from 33.6% to 16.4%, an 

improvement of 17.2% in accuracy. 

 Improving the processing time for interval selection is 

one of the challenges. By calculating the optimal window 

width and skip width for searching based on the input data, 

it is expected to improve processing time without 

compromising accuracy. 

ACKNOWLEDGEMENT 

I would like to thank my colleagues Akihiro Osawa and 

Tetsushi Ishida of Mitsubishi Electric Corporation for 

providing much valuable data and insight on metal 

processing. 

REFERENCES 

[1] Ke, Guolin, et al. "LightGBM: A highly efficient 

gradient boosting decision tree." Advances in Neural 

Information Processing Systems.  

[2]Mitsubishi Electric. Tetsushi Ishida & Takaaki Nakamura. 

"Machining dimension prediction device, machining 

dimension prediction system, machining dimension 

prediction method, and program." Japanese Patent 

Application No. 2022-503591. August 30, 2021. 

 

 



Asia Pacific Conference of the Prognostics and Health Management Society 2023 

5 

Yuji Homma received his M.S degree from Hirosaki 

University in 2016. Since 2016, he has been working for 

Mitsubishi Electric Corp., Japan. His research interests 

include data analysis and machine learning.  

Takaaki Nakamura received his M.S degree from Kyushu 

University in 2002. Since 2002, he has been with Mitsubishi 

Electric Corp., Japan. His research interests include data 

analysis and machine learning. 


