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ABSTRACT

This paper presents a comprehensive process for the ad-
vanced Weibull modelling with potential outlier inclusions.
In this process, an algorithm is designed to identify if there
exist any outliers (i.e., failures with different failure modes
from the majority) in the failure data of the equipment of
interest. Depending on the conditions of the identified out-
liers, a suitable statistical model is developed. To validate
the model, it is compared with the estimated empirical dis-
tribution function with the inclusion of new failure data. It
is shown that the proposed advanced Weibull model outper-
forms the two-parameter Weibull model in terms of fitting,
and hence a better accuracy is achieved in the failure statisti-
cal analysis. Case study in the application of power systems
is conducted to illustrate its effectiveness.

1. INTRODUCTION

The outlier issue commonly exists in statistical analysis.
There are often cases where a few data may not be homo-
geneous to the rest of the data due to a variety of reasons,
and hence can be treated as outliers (Barnett & Lewis, 1994).
In power systems, the outliers could be failures with differ-
ent failure modes from the majority, such as the early fail-
ures due to defects as compared to the failures due to ag-
ing process. In this sense, the outliers can introduce signif-
icant errors in the model estimation, and hence impact the
accuracy of the developed model. Identifying outliers is im-
portant and has drawn great attention over the decades. For
example, Pettit (1988) presented a Bayesian approach to the
modelling of outliers and examined its use in the members
of the exponential family. Nasiri and Pazira (2011) consid-
ered outliers in the samples from the generalized exponen-
tial distribution and derived a Bayes estimator for the pa-
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rameter estimation. Banerjee and Iglewicz (2007) proposed
a simple univariate outlier identification procedure based on
boxplot outlier-labeling rule, which could be used for vari-
ous distributions, such as normal, t, gamma, etc. In terms
of the Weibull distribution, Dixit (1994) adopted a Bayesian
approach to obtain the predictive distribution for the samples
from the two-parameter Weibull distribution in the presence
of outliers. Recently, Gupta and Singh (2017) studied both
classical and Bayesian estimation of Weibull model assum-
ing the outliers are generated from an exponential distribu-
tion. However, these works rely on the prior knowledge on
the number of outliers. It would be better if the algorithm
could automatically identify the number of outliers and their
locations in the distribution (Fung & Paul, 2007). More re-
cently, Zhang et al. (2022) presented an estimation method
for three-parameter Weibull based on the outlier detection to
model the capacity distribution of Li-ion batteries. The out-
liers were identified based on the obtained Weibull parame-
ters and excluded from the sample data. In some cases, the
outliers may provide useful information with the in-depth un-
derstanding of outlier (Shu, Qin, Chen, & Yin, 2018).

In this work, we will propose an advanced Weibull modelling
process, and demonstrate the case where the outliers will be
exploited in the Weibull model development. Hence, the pa-
rameter estimation may be based on the data with or without
the outliers depending on the conditions of the outliers. The
major contributions of the work are summarized as follows.
1) An outlier detection algorithm is developed, which does
not need the primary knowledge on the number of outliers.
The algorithm can identify if there exist any outliers and out-
put the set of outliers (if exist) to the users for any potential in-
vestigations. An evaluation check algorithm is designed to se-
lect the appropriate Weibull model. 2) An advanced Weibull
modelling process is proposed. Depending on the conditions
of the identified outliers, a suitable Weibull model is devel-
oped where the information of outliers will be exploited. 3)
The proposed comprehensive process will be implemented
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based on the actual data in SP Group Power Grid in Singa-
pore. It is shown that the proposed model outperforms the
two-parameter Weibull model in terms of fitting.

The rest of the paper is organized as follows. Section 2 in-
troduces some preliminary results on standard two-parameter
Weibull, competing risk model with Weibull distribution, and
R squared index. Section 3 presents the details on outlier de-
tection, which is followed by the advanced Weibull modelling
process with the inclusion of outlier detection in Sec. 4. Fi-
nally, the case study in the application of power systems is
discussed in Sec. 5. Section 6 concludes the paper.

2. PRELIMINARIES

In this section, we present some preliminary results on
Weibull distribution including two-parameter Weibull, com-
peting risk model with Weibull distribution and R squared
index for the sake of completeness.

2.1. Two-Parameter Weibull

The widely used two-parameter Weibull distribution has two
parameters: shape and scale parameters. The scale parame-
ter (denoted by η) quantifies the characteristic life, defined
as the value at 63.2% percentile in the unit of time (t).
The shape parameter (denoted by β) characterizes the shape
of the distribution, and is also known as the slope when
viewing from a linear cumulative distribution function (c.d.f)
called Weibull probability plot (WPP). The c.d.f of the two-
parameter Weibull distribution is given by

F (t) = 1− e−(
t
η )
β

. (1)

The fitting of data into a Weibull distribution can be viewed
using WPP. WPP is a plot of the empirical c.d.f F̂ (t) of the
data on special axes where y-axis is ln(− ln(1 − F (t))) and
x-axis is ln t. As can be seen from (1), the c.d.f of the
two-parameter Weibull distribution is affine in WPP due to
ln(− ln(1− F (t))) = β ln t− β ln η.

2.2. Competing Risk Model with Weibull Distribution

The competing risk model with Weibull distribution is a sta-
tistical model consisting of a comination of two or more
Weibull distributions that represent failure modes which are
competing to end the life of the equipment. Specifically, for a
competing risk model with two Weibull distributions, where
there are two sets of shape and scale parameters (denoted by
β1, η1, β2 and η2). The survival probability at time t, denoted
by Scr(t) is the product of the survival probability of two
Weibull distributions at time t, denoted by S1(t) and S2(t)
respectively, i.e.,

Scr(t) = S1(t)× S2(t) (2)

where F1(t) = 1 − S1(t) = e−(
t
η1

)β1 is the c.d.f of the first
Weibull distribution, and F2(t) = 1 − S2(t) = e−(

t
η2

)β2 is
the c.d.f of the second Weibull distribution.

2.3. R Squared Index

The R squared index (also known as coefficient of deter-
mination), denoted by R2 characterizes how well the actual
data points fits the predictions made by the theoretical model.
Mathematically, given the actual data {yi}Ni=1 and the model
predictions {ŷi}Ni=1, the R squared index is computed by

R2 = 1− SSres

SStot
, (3)

where SSres =
∑N

i=1(yi− ŷi)2 is the residual sum of squares
quantifying the prediction error, SStot =

∑N
i=1(yi − ȳ)2 is

the total sum of squares quantifying the data variance, and
ȳ = 1

N

∑N
i=1 yi is the average. As can be seen from (3), R2

closer to 1 indicates a better fitting.

3. OUTLIER DETECTION & EVALUATION

In this section, we present two algorithms, where the first one
is to identify if there exist any outliers in the failure data of the
equipment of interest, and the second one is to evaluate the
conditions of the set of outliers produced in the first algorithm
and output a flag for further procedures.

3.1. Outlier Detection

To identify the potential existence of the outliers, the idea is to
exclude each failure data one at a time, and check whether the
fitting of the rest of the data has significantly improved. The
proposed outlier detection algorithm takes two parameters –
R squared difference threshold δ and minimum R squared
threshold rl. These two parameters jointly set the stopping
criteria for the algorithm. Details of the algorithm are dis-
cussed as follows.

• First, a failure set F and an outlier set O are created.
Specifically, the failure set F is initialized with all the
failure data, and the outlier set O is an empty set.

• Repeat the following steps 1-4 if the difference between
the largest and smallest R squared value, ∆r = rmax −
rmin (rmax, rmin to be defined in the following) is greater
than or equal to the R squared difference threshold δ (i.e.,
∆r ≥ δ), or the smallest R squared value is smaller than
or equal to the minimum R squared threshold rl (i.e.,
rmin ≤ rl):
1. For each failure data k in the failure set F (i.e., k ∈
F), do the following steps (a) and (b):

(a) remove the failure data k from the failure set F ,
and define the resulting failure set as Fe, i.e.,
Fe = F\{k},
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(b) use all failure data in the failure set Fe

and all non-failure data (e.g., operating data)
to obtain the empirical distribution function
via Kaplan-Meier (KM) estimator and two-
parameter Weibull via maximum likelihood es-
timation (MLE), which are compared in Weibull
probability plot (WPP) and the corresponding R
squared value rk is obtained.

2. Compare all the obtained R squared values, record
the largest and smallest R squared value (denoted by
rmax and rmin, respectively), and record the point
(denoted by kmax) which gives the largest R squared
value.

3. Compare all the obtained R squared values, and
record the difference between the largest and the
smallest R squared value (denoted by ∆r), i.e.,
∆r = rmax − rmin.

4. If the difference between the largest and smallest
R squared value is greater than or equal to the R
squared difference threshold (i.e., ∆r ≥ δ) or the
smallest R squared value is smaller than or equal to
the minimum R squared threshold (i.e., rmin ≤ rl),
then add the point kmax to the outlier set O, i.e.,
O = O∪ {kmax}, and exclude the point kmax from
the failure set F , i.e., F = F\{kmax}; otherwise,
the algorithm continues with no changes.

• Output the outlier set O.

The proposed outlier detection procedures are summarized in
Algorithm 1.

3.2. Evaluation Check

With the obtained set of outliers produced in Algorithm 1, we
proceed with checking the conditions of these outliers, where
the output will determine the choice of Weibull models in the
modelling process (see Sec. 4).

The evaluation check algorithm takes one parameter, the
maximum number of outliers in the tail, nmax. Detailed pro-
cedures are discussed as follows.

• The tails of the outliers need to be extracted first. Hence,
a normal failure set is defined by removing the outlier set
from the original failure set, i.e., Fn = F\O.

• Find the smallest age tmin = mini∈Fn ti and the largest
age tmax = maxi∈Fn ti in the normal failure set Fn.
Now the lower and upper tails of the outliers could be
extracted, where the lower tail includes the outlier whose
age is younger than tmin, i.e.,Olow = {i ∈ O|ti < tmin},
and the upper tail includes the outlier whose age is older
than tmax, i.e., Ohigh = {i ∈ O|ti > tmax}.

• Find the number of outliers in the lower and upper tails
Nlow = |Olow|, Nhigh = |Ohigh| respectively, where |A|
denotes the number of elements in the set A.

Algorithm 1 Outlier Detection
Input: all non-failure data and failure data 1, 2, . . . , N
Parameter: R squared difference threshold δ, minimum R
squared threshold rl
Output: outlier set O

1: Initialize:
failure set F = {1, 2, . . . , N}, outlier set
O = ∅, ∆r = 1, rmin = 1

2: while ∆r ≥ δ or rmin ≤ rl do
3: ∆r = 1, rmin = 1
4: for each k ∈ F do
5: exclude k from failure set: Fe = F\{k}
6: use all non-failure data and failure data from fail-

ure set Fe to plot WPP, fit into a two-parameter Weibull,
and obtain the R squared index

7: end for
8: record the data point kmax which gives the largest R

squared index rmax
9: record the smallest R squared index rmin

10: record the difference between the largest and smallest
R squared index ∆r = rmax − rmin

11: if ∆r ≥ δ or rmin ≤ rl then
12: add the data point to outlier set O = O ∪ {kmax}
13: exclude the data point from the failure set F =
F\{kmax}

14: end if
15: end while

• If Nlow ≤ nmax and Nhigh ≤ nmax, then a flag ‘PASS’
will be returned; otherwise, a flag ‘FAIL’ will be re-
turned.

The proposed evaluation check procedures are summarized in
Algorithm 2.

Algorithm 2 Evaluation Check
Input: outlier set O, failure set F = {1, 2, . . . , N}
Parameter: maximum number of outliers in the tail nmax
Output: flag

1: define normal failure set by removing outlier set from the
original failure set, Fn = F\O

2: find the number of elements in the outlier set, whose age
is younger than tmin, denoted by Nlow

3: find the number of elements in the outlier set, whose age
is older than tmax, denoted by Nhigh

4: if Nlow ≤ nmax and Nhigh ≤ nmax then
5: flag = ‘PASS’
6: else
7: flag = ‘FAIL’
8: end if

4. ADVANCED WEIBULL MODELLING PROCESS

In this section, we discuss the proposed advanced Weibull
modelling process, where the workflow is as shown in Fig. 1.

First, an outlier detection algorithm (1) referred to Algo-
rithm 1 is developed to identify if there exist any outliers in
the failure data of the equipment of iterest. The obtained out-
lier set will then be proceeded for evaluation check (2) re-

3



Asia Pacific Conference of the Prognostics and Health Management Society 2023

TWO-PARAMETER 
WEIBULL APPLICABLE

3

OUTLIER DETECTION 
ALGORITHM

1

EVALUATION 
CHECK

2

TWO-PARAMETER WEIBULL NOT 
APPLICABLE

5

PASS

FAIL

START

COMPETING RISK MODEL WITH 
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UPDATE

7
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Figure 1. Workflow of the advanced Weibull modelling pro-
cess.

ferred to Algorithm 2. Based on the returned flag, a suitable
Weibull model will be selected for the modelling procedures.

If the returned flag from (2) is ‘PASS’, it implies that the
standard two-parameter Weibull is applicable for modelling
the life-time properties of the equipment (3). In this case,
the standard two-parameter Weibull modelling procedures (4)
will be proceeded. Denote the probability density function
(p.d.f) and cumulative distribution function (c.d.f) of the stan-
dard two-parameter Weibull by f2p(t;β, η) and F2p(t;β, η),
respectively. Further, let {ti}

nf
i=1 be the life-time for the fail-

ure data excluding the failures from outliers, and {ti}nsi=1 be
the life-time for the operating data. Then, the likelihood func-
tion of the data, denoted by L2p(β, η|data), can be obtained
by

L2p(β, η|data) =

nf∏
i=1

f2p(ti;β, η)×
ns∏
i=1

(1− F2p(ti;β, η)).

The estimates of the shape and scale parameters β̂, η̂
can be obtained by maximizing the log-likelihood function
logL2p(β, η|data), which completes the standard Weibull
modelling (4). Fig.-(a) shows an example of the modelling
results.

If the returned flag from (2) is ‘FAIL’, it implies that the stan-
dard two-parameter Weibull is NOT applicable for modelling
the life-time properties of the equipment (5). In this case,
the modelling procedures for competing risk model with two
Weibull distributions will be proceeded.

The maximum likelihood estimation (MLE) method will be

applied to estimate the four parameters in the competing risk
model with two Weibull distributions. For the convenience of
presentation, the p.d.f and c.d.f for the two Weibull distribu-
tions are respectively denoted by f1, f2, F1 and F2. Then the
c.d.f for the competing risk model with two Weibull distribu-
tions, Fcr is obtained by

Fcr = 1− Scr = 1− S1 × S2 = 1− (1− F1)(1− F2).

The p.d.f for the competing risk model with two Weibull dis-
tributions, fcr is obtained by

fcr = λcr × Scr = (λ1 + λ2)× S1 × S2

=

(
f1
S1

+
f2
S2

)
× S1 × S2

= f1(1− F2) + f2(1− F1),

where λ1, λ2 and λcr are the hazard rate functions of the two
Weibull distributions and the competing risk model, respec-
tively. Thus, the likelihood function of the data, denoted by
Lcr(β1, η1, β2, η2|data), can be obtained by

Lcr(β1, η1, β2, η2|data) =

nf∏
i=1

fcr(ti;β, η)

×
ns∏
i=1

(1− Fcr(ti;β, η)).

The estimates of the two shape and two scale parame-
ters β̂1, η̂1, β̂2, η̂2 can be obtained by maximizing the log-
likelihood function logLcr(β1, η1, β2, η2|data), which com-
pletes the modelling of competing risk model with two
Weibull distributions (6).

Finally, the developed Weibull model in (4) and (6) can be
validated when new failures occur (7). Specifically, the new
data (new failures and/or new installations) combined with
the existing dataset (with the exlusion of the outliers for stan-
dard Weibull, or with the inclusion of the outliers for the com-
peting risk model with Weibull distributions) will be used to
obtain the empirical distribution function via Kaplan-Meier
(KM) estimator. This will be compared with the developed
Weibull model to obtain the corresponding R squared in-
dex. A satisfactory R squared index implies that the proposed
Weibull model is validated i.e., the model is sufficiently good
to quantify the life-time properties of the equipment. Other-
wise, it may imply the existence of outliers in the new dataset,
and investigations on the new failures may be needed. Mean-
while, the model will be returned to the start of the process
for an automatic update with the new dataset.

5. CASE STUDY

In this section, we conduct case studies on the transformer
and cable based on the actual data provided by SP Group
Power Grid in Singapore to demonstrate our proposed ad-
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vanced Weibull modelling process. We suppose we were in
2019 and use data up to 2019 for the modelling purpose, and
then use data in 2020 for the model validation purpose.

5.1. Transformer

For the transformer, we have a dataset with over 99% cen-
soring rate (i.e., over 99% of the fleet of equipment is still
operating). We set the parameters δ = 0.01 and rl = 0.9 for
the outlier detection algorithm (Algorithm 1). As can be seen
in Fig. 2a, we have identified 8 outliers (marked in yellow
dot) from the failure data: 3 in 1 year old, 2 in 10 years old, 2
in 12 years old and 1 in 17 years old. All information of these
outliers can be extracted for the engineers to further analyze
the status of the equipment, which is not demonstrated in this
paper for the confidential purpose.

Next, we proceed with the evaluation check algorithm (Algo-
rithm 2) to decide which Weibull model to use for the mod-
elling purpose. We set nmax = 4. Clearly, there is no upper
or lower tail with the number of outliers larger than nmax.
Hence, a ‘PASS’ flag is output from Algorithm 2 indicat-
ing that the two-parameter Weibull is applicable for the mod-
elling purpose. Figure 2b shows the Weibull modelling result
based on our proposed advanced Weibull modelling process.

To validate the model, we now include the data in 2020 and
plot the developed two-parameter Weibull model and all data
up to 2020 in Fig. 2c, where the new failure data is marked in
red dot. The overall fitting accuracy measured by R squared
index is 0.986, which outperforms the two-parameter Weibull
without consideration of outliers (having R2 = 0.854).
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Figure 2. Advanced Weibull modelling with outliers for the
transformer.

5.2. Cable

For the cable, we have a dataset with over 99% censoring rate.
We set the parameters δ = 0.01 and rl = 0.9 for the outlier
detection algorithm (Algorithm 1). As can be seen in Fig. 3a,
we have identified 9 outliers (marked in yellow dot) from the
failure data.

Next, we proceed with the evaluation check algorithm (Al-
gorithm 2) to decide which Weibull model to use for the
modelling purpose. We set nmax = 4. Clearly, the num-
ber of outliers in the lower tail is larger than nmax. Hence,
a ‘FAIL’ flag is output from Algorithm 2 indicating that the
two-parameter Weibull is NOT applicable for the modelling
purpose. Thus, we proceed with the competing risk model
with two Weibull distributions modelling procedures. Fig-
ure 3b shows the modelling result based on our proposed ad-
vanced Weibull modelling process.

To validate the model, we now include the data in 2020 and
plot the developed competing risk model with two Weibull
distributions and all data up to 2020 in Fig. 3c, where the new
failure data is marked in red dot. The overall fitting accuracy
measured by R squared index is 0.965, which outperforms
the two-parameter Weibull without consideration of outliers
(having R2 = 0.662).
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Figure 3. Advanced Weibull modelling with outliers for the
cable.

The advanced Weibull modelling process has demonstrated
significant improvement in terms of fitting in both trans-
former and cable cases. The potential impact brought by the
improvement of the fitting can be seen as follows. The im-
proved fitting accuracy suggests that the derived model pro-
vides a better representation of the failure property, which
gives more accurate information on the reliability of the
equipment. The improved model will benefit many related
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applications, such as failure number prediction and remain-
ing useful life estimation, where the prediction and estimation
accuracy is closely related to the performance of the mainte-
nance planning and cost optimization. Moreover, the identi-
fied outliers may indicate an emerging failure mode. Hence,
these outliers may potentially serve as some alert for the en-
gineers to trigger any failure investigation process, and may
bring changes to the proactive maintenance strategies and
decision-making processes.

6. CONCLUSION

This paper has presented a comprehensive process for the ad-
vanced Weibull modelling with possible existence of outliers.
An outlier detection algorithm has been designed to identify
if there exist any outliers in the failure data. Based on condi-
tions of the detected outliers, an evaluation check algorithm
has been devised to select appropriate Weibull models. For
model validation, the developed model has been compared
with the empirical distribution function estimated by Kaplan-
Meier model with the inclusion of new failure data. Through
case study in the applications of transformer and cable sys-
tems, it has been shown that the proposed advanced Weibull
model outperforms the two-parameter Weibull in terms of fit-
ting. The potential impact brought by the improved mod-
elling process has been discussed.
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