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ABSTRACT

In this paper, we propose a preventive failure mitigation strat-
egy in the power system based on Markov method. Specifi-
cally, we consider multiple units in the system, which are of
different types and are managed by a single utility company.
To characterize the operation, failure mitigation, and deterio-
ration processes of the equipment, a continuous-time Markov
model is formulated. By modelling the failure rate of equip-
ment and the reinstallation rate after failures, the steady state
of the proposed Markov model is analytically derived. Then
to optimize the long-term net revenue of the utility company,
the optimal failure mitigation rate is determined by consider-
ing the failure mitigation capacity for each equipment type as
well as the overall failure mitigation capacity of the company.
The performance of the proposed algorithms is demonstrated
with three types of transformers in the simulation.

1. INTRODUCTION

Power systems can be vulnerable due to the failures of elec-
trical equipment, e.g., transformers, switchgears, and cables,
which can in turn lead to power loss, financial loss, and safety
issues, etc. To improve the reliability of power systems, fail-
ure mitigation has been proven to be a successful solution and
is widely implemented around the world. Among the existing
failure mitigation strategies, there are two widely discussed
topics: corrective failure mitigation and preventive failure
mitigation. In the first scenario, the failure mitigation is car-
ried out only when the failure really happens. However, when
considering the high cost associated with the system damage,
it can be undesirable in the modern society especially when
there is a high requirement on the power quality. In contrast,
preventive failure mitigation can be implemented before the
equipment fails, which can be performed based on the life-
time of equipment, condition information, and criticality in-
dex, etc (Wu, Niknam, & Kobza, 2015; Tian & Liao, 2011;

Yssaad, Khiat, & Chaker, 2014).

Existing research works on failure mitigation strategies usu-
ally consider some optimality criteria, where the objective
function of the optimization problems can be long-term rev-
enue, availability of equipment, and life cycle cost, etc.
Meanwhile, compared with the optimization problems in
single-unit systems (Srinivasan & Parlikad, 2014; Jiang,
2009; Y. Wang & Pham, 2011), we are more interested in
multi-unit systems in the sense that the dependency among
the units can be a crucial factor in making failure mitigation
strategies especially when the system is large and the mitiga-
tion capacity of the utility company is limited (Van Oosterom,
Peng, & van Houtum, 2017; Rasmekomen & Parlikad, 2013).
Therefore, some existing failure mitigation strategies only ap-
plicable to single-unit systems may not be applied directly in
multi-unit cases (Srinivasan & Parlikad, 2014).

To formulate failure mitigation optimization problems,
Markov method is a powerful technique to model the tran-
sitions between different states (e.g., operation state, failure
mitigation state, and failure state) of equipment. By ana-
lyzing the transition rates (e.g., failure rate, failure mitiga-
tion rate, and reinstallation rate after failures), it is promising
to optimize certain criterion based on the steady state of the
Markov model (Ge & Asgarpoor, 2012; Ge, 2010). In such
cases, Markov model is usually discussed in long-term fail-
ure mitigation optimization problems since some periods of
time are required to achieve the steady state. On the other
hand, when considering some varying failure rates, the dis-
cussion on the failure mitigation optimization becomes more
challenging since the steady state of Markov model may be
difficult to obtain or even does not exist. Therefore, additional
to the fixed failure rate discussed in (Ge & Asgarpoor, 2012;
Ge, 2010), it is beneficial to explore how to address varying
failure rates in Markov models if some approximated optimal
solutions are allowed.
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Based on the aforementioned discussions, detailed compar-
ison with the existing research works is summarized as fol-
lows.

1. Different from (Zhong & Jin, 2014; R. Wang, 2016), this
work takes some financial criteria into account, e.g., the
revenue of operation, cost of failure mitigation, and cost
of failure. In contrast to single- or double-unit models in
(Srinivasan & Parlikad, 2014; Wu et al., 2015; Y. Wang
& Pham, 2011; Jiang, 2009; Xiang, Cassady, & Pohl,
2012; Zhang, Fouladirad, & Barros, 2018; Taghipour
& Azimpoor, 2018), the failure mitigation strategy with
multiple units is discussed by considering the failure mit-
igation capacity limits of the utility company.

2. Compared with the Markov methods in (Srinivasan &
Parlikad, 2014; Wu et al., 2015; Xiang et al., 2012),
different equipment types are considered. To adapt to a
wider range of practical problems, the failure mitigation
strategy with varying failure rates is discussed, which can
be viewed as an extension to the conventional Markov
method with fixed failure rates (Ge & Asgarpoor, 2012;
Ge, 2010; Zhong & Jin, 2014; Y. Wang & Pham, 2011;
Van Oosterom et al., 2017), and approximated optimal
solutions are provided.

The overall contribution of this paper is summarized as fol-
lows.

1. The optimal failure mitigation strategy for transform-
ers with different types is discussed based on Markov
method. Specifically, three types of transformers are dis-
cussed and three states (operation state, failure mitigation
state, and failure state) are considered.

2. By analyzing the failure rate of the equipment, the steady
state of the Markov model is analytically derived. Then
the optimal failure mitigation strategy is obtained by op-
timizing the net revenue of the system with the failure
mitigation capacity limits for each equipment type as
well as the overall failure mitigation capacity limits. To
be more practical, the Markov model with varying failure
rates is also discussed, and approximated optimal strat-
egy is provided.

2. SYSTEM MODELLING AND ANALYSIS

2.1. Markov model

In this work, we consider three states of the transformers,
namely operation state, failure mitigation state, and failure
state, which are explained as follows.

• At the operation state, the equipment is in an in-operation
mode and works normally.

• At the failure mitigation state, the equipment is under
preventive failure mitigation before it fails. After the fail-
ure mitigation, the equipment can be as good as new.

• At the failure state, the equipment is out-of-operation,
and repair (or replacement depending on the specific re-
quirement) is needed. After the repair (or replacement),
the equipment can be as good as new.

Based on the above discussion, a continuous-time Markov di-
agram of equipment i ∈ N (i is the index of equipment, and
N = {1, 2, ..., N} is the set of all equipment) is shown in
Fig. 1. The practical meaning of the transition rates is given
as follows.

• a12i : Failure mitigation rate.

• a21i : Reinstallation rate after failure mitigation.

• a13i : Failure rate.

• a31i : Reinstallation rate after the repair (or replacement)
of failures.

In this model, the reinstallation rate after failure mitigation
or repair/replacement can be obtained based on the practice
of the utility company. In addition, the failure rate can be
obtained by certain mature prediction technique if adequate
data about the equipment is available.

Remark 1 Note that for different equipment types, the
Markov diagrams can be different. For example, it is pos-
sible that there is a transition from states 2 to 3 (i.e., failures
occur during failure mitigation process). However, we do not
consider such a diagram in this work since we didn’t identify
the transition from states 2 to 3 in the actual data (the fail-
ure data of transformers investigated in Singapore’s power
system).

Figure 1. Markov diagram of equipment i.

Then, the steady state of the Markov model can be analyt-
ically derived by solving the following equations (P 1

i , P 2
i ,

and P 3
i are the probabilities of staying at states 1, 2, and 3,

respectively). −a12i − a13i a21i a31i
a12i −a21i 0
a13i 0 −a31i

 P 1
i

P 2
i

P 3
i

 =

 0
0
0

 , (1)

P 1
i + P 2

i + P 3
i = 1, (2)
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which gives

P 1
i =

a21i a
31
i

a13i a
21
i + a12i a

31
i + a21i a

31
i

, (3)

P 2
i =

a12i a
31
i

a13i a
21
i + a12i a

31
i + a21i a

31
i

, (4)

P 3
i =

a13i a
21
i

a13i a
21
i + a12i a

31
i + a21i a

31
i

. (5)

2.2. Mitigation Capacity

We consider some constraints of the failure mitigation capac-
ity of the utility company, which can characterize the maxi-
mum number of failure mitigations in progress during certain
period of time. In particular, the constraint of the failure mit-
igation capacity for equipment i is given by

a12i ∈ [a12i , a
12
i ], ∀i ∈ N . (6)

In addition, we consider an overall failure mitigation capacity
constraint of the utility company, which is∑

i∈N
a12i ∈ [a, a]. (7)

Here, a12i , a12i , a, and a are some constants.

3. FAILURE MITIGATION STRATEGY OPTIMIZATION
WITH FIXED FAILURE RATES

In this section, we will optimize the failure mitigation strat-
egy based on the steady state of Markov process with fixed
failure rates. The objective function of the optimization prob-
lem can be formulated in different forms depending on the
requirement of the utility company. Here, we are interested in
the total net revenue harvested from all the equipment during
certain time horizon. To this end, we investigate two failure
mitigation modes: online mitigation and offline mitigation.

For online failure mitigation, we consider that the function of
the system can still be maintained during the failure mitiga-
tion procedure without the interruption of power supply. In
this case, objective function is defined as

Ron =
∑
i∈N

Ron
i , (8)

where Ron
i is the revenue from equipment i:

Ron
i = AiP

1
i L+AiP

2
i L−BiP

2
i a

12
i L− CiP

3
i a

31
i L.

The parameters involved are explained as follows.

• TermAiP
1
i L+AiP

2
i L represents the average revenue of

operation harvested from equipment i over time horizon
L. Ai is the revenue coefficient at operation and fail-
ure mitigation states (note that the system is normal at
failure mitigation state in online mitigation mode). In

practice, Ai can be obtained by considering the total rev-
enue harvested from the system and the weighting factor
of the contribution of equipment i. For example, for a
total revenue A, if the weighting factor of equipment i is
wi ∈ [0, 1], then Ai = wiA.

• Term BiP
2
i a

12
i L is the average failure mitigation cost

over time horizon L. Bi is the cost coefficient of fail-
ure mitigation activity for equipment i, which includes
all the related costs during the failure mitigation process,
e.g., cost of consumable and transport charge.

• Term CiP
3
i a

31
i L is the average failure cost over time

horizon L. Ci is the cost coefficient of failure for equip-
ment i, which can be defined based on all the effects
caused by the failure. For example, for non-repairable
equipment, Ci can include the unit price of equipment i,
transport charge, and reputation loss, etc.

Alternatively, in the offline mitigation mode, the power sup-
ply is interrupted during the failure mitigation process, and
therefore no revenue can be harvested from the equipment.
In this case, the total net revenue function can be given by

Roff =
∑
i∈N

Roff
i , (9)

where Roff
i is the revenue from equipment i:

Roff
i = AiP

1
i L−BiP

2
i a

12
i L− CiP

3
i a

31
i L.

Compared with online mitigation, the difference of offline
mitigation is that the revenue during failure mitigation pro-
cess AiP

2
i L is not involved.

Then the online failure mitigation rate optimization problem
can be formulated as follows.

(P1) max
a12
i ,∀i∈N

Ron subject to (6), (7).

Similarly, the offline failure mitigation rate optimization
problem can be formulated as follows.

(P2) max
a12
i ,∀i∈N

Roff subject to (6), (7).

By solving the optimal failure mitigation rate a12i , the utility
company can choose averagely

∑
i∈N a12i P

1
i units out of the

in-operation units for the failure mitigation process.

4. FAILURE MITIGATION STRATEGY OPTIMIZATION
WITH VARYING FAILURE RATES

In practice, the failure rate may be varying due to the com-
plicated degradation process of the equipment. In this case,
the steady state of the conventional Markov model may not
be obtained easily or even does not exist. However, it is pos-
sible to provide some approximated optimal strategies by fol-
lowing the analysis procedure in Section 3. In this work, we
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derive the steady state of the Markov model based on (3)-(5)
by viewing the failure mitigation rate a12i,t and failure rate a13i,t
as varying (in this work, the varying nature of parameters is
reflected by time index t ∈ T ), which gives

P 1
i,t =

a21i a
31
i

a13i,ta
21
i + a12i,ta

31
i + a21i a

31
i

, (10)

P 2
i,t =

a12i,ta
31
i

a13i,ta
21
i + a12i,ta

31
i + a21i a

31
i

, (11)

P 3
i,t =

a13i,ta
21
i

a13i,ta
21
i + a12i,ta

31
i + a21i a

31
i

. (12)

Remark 2 (10) to (12) can be viewed as the approxima-
tion of the steady state (if exist) of the Markov model with
varying failure rates. The approximation error can be lower
when the failure rate varies slowly compared with the failure
mitigation/repair/replacement activities. As a consequence,
the proposed failure mitigation strategies (as discussed later)
can provide an approximated optimal solution to the varying
Markov model.

Then by following (8), the total net revenue in online mitiga-
tion mode can be given by

Ron
t =

∑
i∈N

Ron
i,t ,

where

Ron
i,t = AiP

1
i,tL+AiP

2
i,tL−BiP

2
i,ta

12
i,tL− CiP

3
i,ta

31
i L.

By following (9), the total net revenue in offline mitigation
mode can be given by

Roff
t =

∑
i∈N

Roff
i,t ,

where

Roff
i,t = AiP

1
i,tL−BiP

2
i,ta

12
i,tL− CiP

3
i,ta

31
i L.

Similar to Section 3, the constraints of failure mitigation ca-
pacity are considered as

a12i,t ∈ [a12i , a
12
i ], ∀i ∈ N , t ∈ T , (13)

∑
i∈N

a12i,t ∈ [a, a], ∀t ∈ T . (14)

Then, the failure mitigation rate optimization problems in on-
line and offline mitigation modes can be given by

(P3) max
a12
i,t,∀i∈N

Ron
t subject to (13), (14),

Table 1. Data of transformers

Equipment type A B C
Failure rate 0.0008 0.0002 0.0005

Number of units 582 9315 8920

Table 2. Financial parameters of revenue functions (unit: S$)

Equipment type A B C
Operation revenue 800 1000 500

Failure cost 1000000 250000 500000
Mitigation cost 5000 10000 500

and

(P4) max
a12
i,t,∀i∈N

Roff
t subject to (13), (14).

5. SIMULATION

In this section, we will show the performance of the proposed
failure mitigation strategies. In particular, we consider three
types of transformers, whose data is set in Table 1. In prac-
tice, the failure rate of each equipment type can be obtained
by modelling the failures based on certain distribution (e.g.,
Weibull distribution). Some financial parameters of revenue
functions are set in Table 2. In addition, let a12i = 0.01,
a12i = 0.5, and a21i = a31i = 0.01, ∀i ∈ N .

5.1. Simulation With Fixed Failure Rates

To demonstrate the performance of the proposed failure mit-
igation strategy with fixed failure rates, we directly use the
failure rates in Table 1 without any modification. In addition,
to show the influence of the overall failure mitigation capac-
ity of the utility company on the optimal failure mitigation
rate, we let a =

∑
i∈N a12i and conduct the simulation with

different a.

The simulation result for online mitigation mode is shown in
Figs. 2(a) to 2(c). In particular, the optimal failure mitiga-
tion rate with different overall mitigation capacities is given
in Fig. 2(a). The probability of failure state with different
overall mitigation capacities is given in Fig. 2(b). To deter-
mine the number of failure mitigation times (i.e., the number
of units under failure mitigation) for each equipment type,
one can first set a targeted failure number on the curve of
“expected failure number” in Fig. 2(c). Then the number of
failure mitigation times is determined by drawing a vertical
line through the point of the targeted failure number and find-
ing the intersections on the curves of “mitigation times”. For
example, to achieve an average 2.1 failures, the number of
failure mitigation times of the three types of transformers are
around 64, 61, and 58, respectively. That means one needs
to choose around 64 Type A transformers randomly in the
in-operation Type A transformers. The simulation result for
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offline mitigation mode is shown in Figs. 3(a) to 3(c), which
can be understood in a similar way as the online mitigation
counterpart.

5.2. Simulation With Varying Failure Rates

To show the performance of the proposed failure mitigation
strategies in Section 4, the varying failure rate of different
equipment types is designed as a13i,t+1 = a13i,t + δi, where

δi =

 0.00005 if i is an index of Type A transformers,
0.0001 if i is an index of Type B transformers,
0.0002 if i is an index of Type C transformers.

For online mitigation strategy, the simulation result is shown
in Figs. 4(a) to 4(c). Figs. 4(a) and 4(b) provide the optimal
failure mitigation rate and the number of failure mitigation
times in each year, respectively. To verify the benefit of vary-
ing failure mitigation rate, we simulate the total net revenue
with a fixed failure mitigation rate during the next 50 years,
which is chosen as the optimal mitigation rate in Year 1. Fig.
4(c) shows that the varying failure mitigation rate can produce
more revenue than the fixed rate counterpart. The simulation
result in offline mitigation mode is given in Figs. 5(a) to 5(c),
which can be understood in a similar way as the online fail-
ure mitigation counterpart. The negative net revenue in some
years is due to the high failure rates in those years.

6. CONCLUSION

In this paper, we discussed several optimization problems
for failure mitigation strategies based on Markov method.
Specifically, we optimized the total net revenue by consid-
ering the failure mitigation capacity of the utility company
as well as different mitigation modes (i.e., online and offline
mitigations). It shows that the optimal mitigation strategy can
be settled by setting a targeted expected failure number. Then
to adapt to a wider range of practical problems, the failure
mitigation strategies with varying failure rates were also dis-
cussed.
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Figure 2. Simulation with fixed failure rates (online failure mitigation). (a) Optimal failure mitigation rate with different overall
mitigation capacities. (b) Probability of failure state with different overall mitigation capacities. (c) Determination of optimal
mitigation times based on expected failure numbers.
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Figure 3. Simulation with fixed failure rates (offline failure mitigation). (a) Optimal failure mitigation rate with different overall
mitigation capacities. (b) Probability of failure state with different overall mitigation capacities. (c) Determination of optimal
mitigation times based on expected failure numbers.
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Figure 4. Simulation with varying failure rates (online failure mitigation). (a) Optimal failure mitigation rate in different years.
(b) Number of failure mitigation times in different years. (c) Net revenues with and without varying failure mitigation rate.
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Figure 5. Simulation with varying failure rates (offline failure mitigation). (a) Optimal failure mitigation rate in different years.
(b) Number of failure mitigation times in different years. (c) Net revenues with and without varying failure mitigation rate.
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