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ABSTRACT 

To maintain the safety and functionality of dams over the 
long term, it is necessary to make inspections more labor-
saving and efficient using the latest technology and to 
improve the sophistication of inspections based on data. 
Although dam inspections cover a wide range of items, this 
study focuses on the continuous monitoring of popouts, a 
phenomenon of concrete deterioration occurring on the 
surface of a dam body. It is difficult to predict whether a 
popout will occur from information on the body surface of 
the dam, owing to the generation mechanism of the popout. 
The number of popouts was monitored over time; however, 
no examples of shape changes were monitored over time. 
Advancements in various digital technologies are required to 
accurately evaluate changes in the dam body's surface over 
time; therefore, in this study, three-dimensional (3D) point-
cloud data is created by the Structure from Motion (SfM) 
from images captured by a Unmanned Aerial Vehicle (UAV) 
of the concrete defect area due to the popout in an arch dam 
in the Tohoku region of Japan. The volume of concrete 
defects of a popout in each of two different periods was 
calculated by estimating the plane shape of the surface of the 
dam body. In addition, the shapes of two popouts were 
compared to confirm the possibility of predictive signs of 
change. 

1. INTRODUCTION 

1.1. Background 

In Japan, daily inspections, periodic inspections every three 
years, and comprehensive inspections every 30 years are 
conducted to maintain the safety and function of dams over 
the long term. Although dam inspections cover a wide range 
of investigation areas and items, it is important to conduct 
inspections and maintenance management even under social 

structures, such as aging infrastructure, declining population 
and lack of personnel, and natural environments, such as 
frequent heavy rainfall and rising temperatures, which are 
expected to undergo significant changes in the future. 

Conventionally, inspection of a dam body surface is 
conducted by inspection engineers using temporary 
scaffolding, gondolas, rope access, or other direct access 
methods. Dam inspection entails some challenges such as 
work preparation costs for access, limited work periods 
owing to non-flood periods, hazards from working at heights, 
and long work hours owing to extensive inspections. In 
addition, the results of the inspection survey are not 
accurately captured over time in terms of the location, shape, 
and quantity of deterioration information owing to the 
digitization of handwritten notes on drawings and differences 
in the evaluation of inspection results depending on the 
inspection engineer’s competence. Therefore, new inspection 
and maintenance management methods that use technologies 
such as Information and Communication Technology (ICT) 
and Artificial Intelligence (AI) are required to replace human 
resources and analog inspections. Currently, maintenance 
management is based on post-inspection results. However, in 
the future, data accumulation is expected to lead to data-
driven preventive maintenance management. 

1.2. Purpose 

As shown in Figure 1, popout, one of the concrete 
deterioration phenomena focused on in this study, implies 
that the concrete surface peels off in the shape of a thin plate. 
If the concrete surface contains low-quality aggregates with 
high water absorption, the internal expansion pressure 
increases, thereby causing the extrusion of the aggregates. 
Frost damage, wherein water in the concrete repeatedly 
freezes and thaws, contributes to this phenomenon. Therefore, 
continuous monitoring is required. 

The authors are researching a method to objectively and 
quantitatively evaluate the deterioration status of the dam 
body surface through AI-based image recognition (Yasuno, 
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Fujii, and Amakata, 2019)(Yasuno, Ishii, Fujii, Amakata, and 
Takahashi, 2020) using images captured by autonomous 
UAV flights. In above these research, the popouts can also be 
counted as the number of popouts that occur on the surface 
of the dam body. Moreover, changes in the number of 
popouts can be confirmed by photographing the dam over 
time. Once a popout occurs, it is theoretically considered not 
to expand. However, the images of the dam body’s surface 
can only confirm the presence or absence of anomalies on the 
dam body’s surface. It is unclear how many low-quality 
aggregates exist in the dam body concrete, and the actual state 
of deterioration in the depth direction has not been confirmed. 
Higher-order information is required to estimate the signs of 
popout occurrence and to confirm the expansion in the depth 
direction over time after popout occurrence. Therefore, as a 
fundamental study, this study reconstructed the 3D shape of 
each popout from the aerial images captured by UAVs close 
to the dam body surface at two different periods. The volume 
of concrete defects owing to each popout was then estimated, 
and the two popout shapes were compared. 

The remainder of this paper is organized as follows: Section 
2 introduces the method for measuring the shape of the 
popout in related work. Section 3 presents the proposed 
methodology applied to the estimation of the concrete defect 
volume and a comparison of the popout shapes. Section 4 
validates the proposed methodology using field data. Finally, 
the conclusions and future work are discussed in Section 5. 

 
Figure 1. Popout generation mechanism. 

2. MEASUREMENT OF POPOUT SHAPE 
There are three possible methods for measuring the popout 
shape on the surface of a dam body: measurement by an 
inspection engineer, measurement using Light Detection And 
Ranging (LiDAR), and 3D reconstruction using 
photogrammetry. An overview of each method is provided 
below. 

2.1. Inspection Engineer 

To access the surface popout of the dam body, inspection 
technicians must assemble temporary scaffolds or use ropes 
or gondolas. Even if the popout location is accessed using 
such a technique, it is difficult to record the popout shape 

because it is complex, and there is no technique to measure 
or trace it completely on the spot. 

2.2. LiDAR 
The authors realized autonomous navigation of a UAV using 
a total station navigation, total station is surveying instrument, 
in the vicinity of a dam body, where Global Navigation 
Satelite System (GNSS) could not be received properly. (Ishii, 
Yasuno, Amakata, Sugawara, Fujii and Ozasa, 2020)． This 
method can obtain accurate flight position information 
without a high-precision Inertial Measurement Unit (IMU). 
Therefore, the digital camera mounted on the UAV was 
changed to a LiDAR to enable point cloud measurement by 
the UAV, even in a non-GNSS environment. Figure 2 shows 
the results of the measurement of a popout near the center of 
the dam body surface using this method with a LiDAR 
(Velodyne, VLP-16-LITE) mounted on a UAV. Owing to the 
variability of the LiDAR measurements, the surface of the 
dam body cannot be represented as the only surface. It is 
difficult to represent the popout shape because of the need for 
noise processing and adjustments using fixed or validation 
points. 

 
Figure 2. LiDAR measurement results in the vicinity of the 

popout on a sliced section of the dam body. 

2.3. Photogrammetry 

The 3D dam shape and aerial image positions are obtained 
from consecutive and overlapping aerial images captured by 
a UAV using SfM. Feature points are then automatically 
extracted from each aerial image, and the 3D shape of the 
dam body surface is reconstructed by matching the feature 
points between the images. Although the point-cloud data for 
the dam body's surface are uniquely determined, the 
reconstructed dam body's surface shape differs depending on 
the brightness, hue, and appearance of the image while 
capturing it as it is not possible to set fixed points or 
validation points on the dam body's surface (Ishii, Sugawara, 
Fujii and Amakata, 2023). However, because the dam body 
surface is constructed using clean point-cloud data, this study 
used a 3D geometry of the dam body surface reconstructed 
by photogrammetric methods. 

Popout 
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3. METHODOLOGY 

3.1. Estimation Method of Concrete Defects Volume 
This section describes the procedure for estimating the 
volume of concrete defects caused by popouts. The procedure 
is as follows: 

1. 3D reconstruction of the dam body surface, including the 
popout, by SfM using aerial images. Next, the point-
cloud data of the popout were extracted from the 
reconstructed 3D shape. The extraction of the point-
cloud data of the popout was performed because the dam 
is an arch-type, and the plane shape of the dam body’s 
surface is complex. 

2. Estimation of the plane shape of the dam body surface. 
From the point-cloud data of the extracted popout area, 
the variables of the plane equation in Eq. (1) of the dam 
body surface were estimated by Random Sample 
Consensus (RANSAC). 

 + + + = 0 (1) 

3. Calculation of the  distances between the estimated 
planes using Eq. (1) and each point of the pop-out using 
the point and plane formulas in Eq. (2). 

 = | + + + |
√ + +  (2) 

4. Calculation of the unit vectors  and ′ of the normal 
values of the estimated plane using Eq. (1) and XY plane, 
respectively. 

5. Calculation of angle θ from the unit vectors  and ′ 
using Eq. (3). 

 = ⃗ ∙ ′⃗
| ⃗| ∙ ′⃗  (3) 

6. Calculation of the unit vector = ( , , )  of the 
axis of rotation from the unit vectors  and ′ using the 
outer product. 

7. Rotation of the popout point-cloud data  around the 
rotation axis by θ using the Rodriguez rotation formula 
listed in Eq. (4). 

  ′ = ( )  (4) 

where rotation matrix ( ) in Eq. (4) is expressed by 
Eq. (5). Subsequently, all rotated points are projected 
horizontally onto the XY plane. 

 ( ) = (1 − ) + ,(1 − ) + ,(1 − ) − , (5) 

 
(1 − ) − ,(1 − ) + ,(1 − ) + , 

 
(1 − ) +(1 − ) −(1 − ) +  

8. Calculation of the average area  for each point. The 
average area  is calculated by dividing the space by a 
voronoi division based on the points distributed in the 
XY plane, calculating the area of each region delimited 
by each point, and averaging the area of each region. 

9. Calculation of the concrete defect volume  due to the 
popout using Eq. (6). 

 = ( × ) 
(6) 

3.2. Comparison of Popout shape 
The closest iterative Points (ICP) algorithm (Paul & Neil, 
1992) was used for the alignment process between the point 
clouds. The procedure is as follows: 

1. Nearest neighbor search: For each point in point group ,  which is the converted source data, the 
corresponding point in point group ,  which is the 
destination data, is searched. The collection of 
corresponding points is defined as , where  is the 
number of iterations of each step of the ICP algorithm, 
and the numbers of  and  points  are the same. The 
Euclidean distance between the two points is then set to ( , ), and the distance between a specific point  and 
a point-cloud data group = { }, i = 1, … ,  
consisting of  points, is set to d( , ) =min∈{ ,… } ( , ) . For all points in , the nearest 

neighbor points to  are searched in the kd-tree, which 
corresponds to the point set = ( , ). 

2. Estimation of rigid-body transformation: The rigid-body 
transformation that minimizes the position error between 
two-point clouds is estimated using the  and  
covariance matrices. The centers of gravity of the two-
point groups,  and  are computed in Eq. (7), 
respectively: The covariance matrices are expressed by 
Eq. (8). 

 ⃗ = 1 , ⃗ = 1 , (7) 

 
＝

1 ( − ⃗ )( − ⃗ )
= 1 [ ] − ⃗ ⃗  

(8) 

Then, the 4×4 symmetric matrix  Q( ) shown in Eq. 
(9) is calculated. 
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 Q ＝
( ) ∆∆ + − ( )  (9) 

where ( ) is the sum of the diagonal components 
,  ∆= [ ]  is a vector consisting of =( − ) , and  is a 3×3 unit matrix. As the 

eigenvector for the largest eigenvalue of Q  
corresponds to = [ ] , the translation 
component can be calculated using Eq. (10). 

 ＝ ⃗ − ( ) ⃗  (10) 

3. Update of the object posture. The converted source 
point-cloud data  is updated. 

4. Convergence judgment: If there is no convergence, the 
process returns to 1. Steps 1–3 are repeated until the 
convergence conditions are satisfied. The convergence 
condition is satisfied when one of the following 
conditions is satisfied: 

 The squared error of the converted source and 
destination point-cloud data is less than the threshold 
value. 
 Maximum number of iterations. 
 The amount of displacement between the k-1 step and 
k-step rigid-body transformations is below the 
threshold. 

4. RESULTS 

4.1. Data Used for Verification 
In an arch dam in the Tohoku region of Japan, numerous 
popouts of various sizes, ranging from the size of a human 
fist to that of a human head, were observed on the upstream 
and downstream surfaces of the dam body. Aerial images of 
the largest class of popouts in the center of the downstream 
surface of the dam body recorded with a resolution of 
approximately 2.0 mm/pixel by UAV autonomous navigation 
using total station navigation (Ishii et al, 2020) in 2019 and 
2022 are shown in Figure 3. Although the shooting conditions 
are the same, the appearance of the popout is different 
because the shooting time is different. 

4.2. Estimation Result of Concrete Defects Volume 
The volume of the popout was estimated according to the 
procedure described in Section 3.1. The 3D shape of the dam 
body surface was reconstructed from the aerial image 
captured by the UAV using the SfM analysis software 
Metashape, and the popout shown in Figure 3 was manually 
extracted from the reconstructed 3D point-cloud data using 
the point-cloud processing software CloudCompare. The 
point-cloud data for the extracted popouts are shown in 
Figure 4. In Figure 4, the point-cloud data on the plane 
estimated using RANSAC are colored red for 2019 and blue 

for 2022. RANSAC uses the open3d library in Python, 
wherein the threshold of the maximum distance from the 
estimated plane was 0.01(m), the number of random 
sampling points was 1,000 points, and the number of times 
the plane was checked by sampling was 3,000 times to 
estimate the plane equations. In addition, because the aerial 
image was captured directly facing the dam body surface, the 
3D reconstruction results in a point cloud that is curved into 
an arch shape, with the horizontal spacing widening and 
vertical lines becoming more prominent. 

 

 
Figure 3. Aerial popout image. 

【Photographed in August 2019】 
(From horizontal direction) 

 

(From directly above) 

 
【Photographed in September 2022】 

(From horizontal direction) 

 

(From directly above) 

 
Figure 4. Bird’s eye view of popout’s point-cloud data 

Table 1 shows the constants of the estimated plane equations, 
total number of point-cloud data, number of popout only 
point-cloud data (PCD), average and maximum distances 
between the estimated plane and popout points, average area 
per point, length of one side, and estimated volume. Here, the 

Upstream side 

Downstream side 

Photographed in September 2022 

Photographed in August 2019 

Upstream side 

Downstream side 
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length of one side was the length of the side when the 
estimated volume was divided by the average distance, and 
the area was a square. 

The estimated concrete defect volumes of the two popouts 
were almost the same. Although the absolute scale was 
unknown, the length of one side confirmed that it was of the 
same size as the largest class of popouts; therefore, the 
estimation method was considered correct. 

Table 1. List of calculation results. 
 

Item 2019 year 2022 year 
Constants of the estimated 
plane equations 

: 0.9385 : 0.3051 :−0.1614 : 52696.0546 

: 0.9336 : 0.3154 :−0.1701 : 54068.8465 
Number of PCDs (all) 111,627 117,369 
Number of PCDs (popout only) 15,512 17,198 
Average distances (m) 0.052 0.052 
Maximum distances (m) 0.169 0.170 
Average area per point (m2) 0.113×10-4 0.099×10-4 
Length of one side (m) 0.419 0.412 
Estimated volume (m3) 9.078×10-3 8.778×10-3 

4.3. Results of Shape Comparison 
Alignment of the point-cloud data for 2019 and 2022 was 
performed according to the ICP algorithm described in 
Section 3.2. The convergence conditions were set to a 
squared error of 0.003(m), the maximum number of iterations 
was 100, and the amount of moved displacement was below 
0.0001(m). 

Figure 5 shows the convergence of the distance error. It was 
confirmed that the distance error decreased monotonically 
and converged. Figure 6 shows the alignment results of the 
two-point clouds when convergence was achieved. Red 
shows the point cloud of the 2019 popout, and blue shows the 
point cloud of the 2022 popout, which are well-superimposed. 

 
Figure 5. Convergence status of distance error. 

(From horizontal direction) (From directly above) 

 

 

Figure 6. Aligment result of popout point-cloud data. 

5. CONCLUSION AND FUTURE WORKS 

In this study, the 3D shape of each popout was reconstructed 
from the aerial images captured by UAVs in close proximity 
to the dam body surface at two different periods. The volume 
of concrete defects caused by each popout was estimated, and 
the two popout shapes were compared. The results showed 
that the concrete defect volumes of the two popouts were 
almost the same, and their shapes overlapped well, 
confirming that there were no significant shape changes 
during the three-year period from 2019 to 2022. 

In future work, the topics to be examined are discussed below. 

 Verification of estimation methods by comparison with 
field measurement results and theoretical values. 

 Evaluation at different popouts. 
 Improving the accuracy of the 3D reconstructed shapes 

using reference and fixed points. 
 Automatic extraction of popouts scattered throughout 

dam body surface. In addition, the change in the shape of 
all the popouts will be investigated. 

 To continue capturing aerial photography data in the 
future. 

 Establishing a new method to predict the transition in the 
number of defects in the entire concrete as a new 
monitoring item. 
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