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ABSTRACT

Monitoring air quality to protect the population is a chal-
lenge for cities with modest budgets. With this in mind, a
measuring station has been developed using low-cost sensors
(LCS) arranged in Triple Modular Redundancy (TMR). How-
ever LCS technology has limitations which lead to incom-
plete or inaccurate air quality measurements.

To improve the availability of the measuring station, and also
to make the data gathered more reliable, a fault detection
method is proposed in this paper. By comparing measure-
ments collected by the LCS in TMR configuration, the pro-
posed method synthesizes measurements for each monitored
parameter and assesses the health state of the measuring sta-
tion in real-time. This information can be used to promptly
alert maintenance teams, facilitating timely interventions and
ensuring the continuous monitoring of air quality.

1. INTRODUCTION

Monitoring air quality at a city level with conventional means
is very costly and only cities with a large budget are equipped
for that. Therefore, for small municipalities with a modest
budget, it was proposed to develop air quality measuring sta-
tions with low cost sensors (LCS) as an alternative. Reduc-
ing costs by a factor of 10 to 100, LCS enable measurement
points to be extended over vast areas, thanks to the integra-
tion of Internet of Things (IoT) technology. While they may
be less precise than conventional measuring stations, LCS can
be used in conjunction with them, as suggested by Castell et
al. (Castell et al., 2017). They are highly accessible and easy
to deploy without the need for specialized personnel. Taking
advantage of these benefits, a proposed measurement station
featuring triple redundancy using LCS sensors has been pro-
posed in (Poupry, Béler, & Medjaher, 2022). The measuring
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station consists of 3 smart sensors (SmS) and an Aggregator
component (Figure 1). All these elements are connected lo-
cally in WiFi to a Local Area Network (LAN) and connected
to the Internet. The Aggregator’s primary function is to re-
ceive, store, structure and process observation data transmit-
ted by the SmS in order to be inform relevant authorities to
make decisions. The role of each SmS is to transmit mea-
surements structured in temporal matrix to the Aggregator at
a period Te determined by monitoring objectives for specific
parameters and the capacities of the LCS. Each SmS consists
of a micro-controller and one or more LCS that measure the
N physical parameters established during the city measure-
ment definition.

Figure 1. Measuring station composition.

The SmS have been designed in our research laboratory to
augment LCS with enhanced computation and communica-
tion capabilities. At the heart of the station lies the Aggre-
gator, which acts as a central hub that gather information
and facilitates communication by means of an API, enabling
smooth integration and data exchange between the Smart
Sensors and the graphical user interface (GUI) used by with
decision-makers. The initial deployment of one station has
been successful, but currently, the initial deployment of the
station has been beset by several hardware failures. Unfor-
tunately, these faults can only be diagnosed by the individ-
ual who constructed the station, creating a need for a more
streamlined and accessible maintenance process. Simplify-
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ing the detection of hardware failures is imperative, as main-
tenance personnel may lack extensive electronics knowledge
and expertise in station reliability and fault diagnostics.

The main objective of the project is to enable long-term
and large-scale air quality monitoring, supplying decision-
makers with consistent data via an interface for well-informed
decision-making regarding citizen protection. Nonetheless,
initial deployment limitations show that LCS may encounter
random and sudden failures during pollutant concentration
measurement, requiring expert validation and network mon-
itoring. To ensure consistent long-term pollutant level mea-
surements, there is a need to simplify hardware failure de-
tection, acknowledging that maintenance staff might lack ex-
pertise in electronics and station reliability and fault diagnos-
tics. As such, this paper propose to extend the measurement
station capabilities with self-confirmation detection and self-
diagnostic features, facilitating more straightforward mainte-
nance and system reconfiguration.

The rest of paper is organized into four sections. Section 2
discusses the current state of the field and highlights the nov-
elty of the paper. Section 3 presents the proposed fault detec-
tion method, its assumptions, and its main components. Sec-
tion 4 focuses on applying the method to a measuring station
in Argelès-Gazost, France, and discussing the results. Finally,
section 5 concludes the paper and suggests future directions.

2. STATE OF THE ART AND WORK POSITIONING

LCS, being cost-effective, can be deployed in large quantities,
which significantly enhances the spatial resolution of mea-
surements across a designated area, refining the monitoring
grid over the territory. On one hand, this improvement in
measurement points can enrich prediction models, leading to
better forecasts. On the other hand, it enables the detection of
local pollution sources that may be difficult to predict using
conventional spatial and topographic dispersion models. This
approach is similar the work on waste treatment or industrial
sites (Schneider et al., 2017; Morawska et al., 2018). How-
ever, the drawbacks of LCS include issues with their material
quality, measurement drift, cross-interference with other pol-
lutants, and their relatively short lifetime (Lewis et al., 2016).
To overcome these shortcomings, the design of the measur-
ing station is based on a triple modular redundancy (TMR)
technique applied to SmS. The TMR method enhances the
measurement horizon and and allows to yield coherent data.
The principle of TMR involves three identical and indepen-
dent modules operating in parallel and measuring the same
physical parameter. The information output of these modules
is subjected to an algorithm based on a voting process to gen-
erate a synthesis. The voting process can typically involve
a majority vote, a median vote, or a weighted average vote
(Lorczak, Caglayan, & Eckhardt, 1989). Although this con-
figuration improves the reliability (Kucera, Hyncica, Cidl, &

Vasatko, 2006), the fundamental algorithms have two nega-
tive aspects in the context of the proposed solution: on the one
hand, these algorithms share a common feature of masking er-
rors through aggregations and on the other hand the modules
must be synchronized to enable comparison. However, the
station’s design ensures that the SmS operate independently,
transmitting their measurements at their own frequency. As
a result, the voting algorithm must be adjusted to account
for this lack of synchronization and accept non-simultaneous
measurements.

This paper focuses on fault detection in SmS by comparing
them with each other. The closest domain to the applica-
tion addressed in this paper is the Wireless Sensor Networks
(WSN), where the Aggregator acts as a sink node and the
SmS as sensor nodes. Among these various fault detection
techniques presented in (Muhammed & Shaikh, 2017), the
most appropriate for this study seems to be the centralized
self-fault detection. Likewise, the median voting algorithm
is chosen because of its measure of central tendency, and is
less sensitive to extreme and missing values, which is a com-
mon problem with LCS. In data processing, the median is
preferred to the arithmetic mean, as the mean is strongly in-
fluenced by extreme values (Leys, Ley, Klein, Bernard, &
Licata, 2013). However, the median may have limitations
with odd input values or when outliers are present (Bass,
Latif-Shabgahi, & Bennett, 1997). These outliers, particu-
larly those caused by hardware sensor failures, need to be
excluded.

In conclusion, the measurement station uses TMR of SmS
equipped with LCS that may have significant material de-
fects. To enable self-diagnosis and auto-configuration, TMR
techniques and fault detection in WSN are employed, with
hardware maintenance performed by the maintenance team.
The contribution of this paper consists in the formalization of
a mathematical method executed in four steps: measurement
collection, fault detection, diagnostic analysis with potential
feedback from maintenance operators, and aggregation con-
sidering outliers exclusion and submission for aggregation.

3. PROPOSED METHOD DEVELOPMENT

This section presents an exposition of the proposed method
development, which is divided into three distinct parts. Ini-
tially, the measurement protocol and related definitions are
provided, followed by an elaboration of the working assump-
tions pertaining to the method. Finally, a detailed account of
the method is presented.

3.1. Measurement protocol

The measurement station described in this article measures
N = 4 physical parameters: PM10 (φ1), temperature (φ2),
humidity (φ3), and pressure (φ3). The station is composed
of three SmS, each of which is a micro-controller connected
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to the LCS for computing and communication capabilities.
Each SmS possesses its own sampling period Tex of approx-
imately one minute.

The station operates with an observation window of size τ ,
typically lasting around an hour. It down-samples the mea-
surements from the SmS. The Aggregator plays a crucial role
by collecting the measurements from the three SmS during
the observation period and performing median aggregation.
It facilitates communication among the SmS, detects failures,
and synthesizes the observations for each τ period.

The station communicates with the external environment via
the GUI that connects directly to the aggregator to obtain de-
tection and diagnostic information, and to communicate feed-
back on any necessary maintenance interventions. The reli-
ability of the station refers to the consistency and long-term
availability of the data.

3.2. Working assumptions

This paper does not address sensor calibration policy due to
resource limitations in the laboratory. The manufacturer’s
calibration is used, with adjustments made in a controlled en-
vironment to ensure consistency. This workaround does not
significantly impact the study’s focus on trend identification
and failure detection. Calibration will be addressed in future
studies.

For the measuring station’s physical configuration, the time
response is relatively slow, allowing for the exclusion of
short-term pollution peaks. The sampling period is set at one
hour (τ = 1 hour).

As the distance between sensors in the station is small, the
measured physical parameter is assumed to be the same. The
SmS observations are merged at the same point for each pa-
rameter for all LCS.

The SmS has a sampling period of about a minute, requir-
ing an observation window of at least three points for com-
parisons (τ > 2 ∗ Tex). Its modular design facilitates easy
replacement and reconfiguration.

The Aggregator is a single point of failure but is considered
more reliable than the SmS. Local storage on each SmS pre-
vents data loss in case of aggregator failure. Data recovery
strategy will be considered in future work.

3.3. Detailed method and related formulas

The proposed method has been incorporated into the Aggre-
gator to ensure the reliability of the observations made by the
SmS. This method involves a sequence of eight steps, which
are outlined in Figure 2. The processing steps culminate in
the production of synthesis measurements of the physical pa-
rameters, along with the detection of hardware faults.

Figure 2. The functionalities of the aggregator.

Step 1: Initialization.
The initial step involves the creation of temporal observation
matrices, which are also called as raw data. The observations
are sent from all the SmS of the station and are slightly asyn-
chronous due to the varying observation periods of each SmS.
Indeed, each one measures the four physical parameter with
its own sampling period, denoted by Tex. All these observa-
tions (Mx from SmS x) are stored in a temporal matrix Yx of
size (Mx ∗N ). The physical measurements are not synchro-
nized since each SmS is autonomous and independent. The
physical parameter measured by the SmS number x at time k
is denoted by yφi

x (k). Thus, an observation of the four phys-
ical parameter (N = 4) at time k is noted yx,k as shown in
Eq. (1). The observation matrix Yx is described in matrix (2).

yx,k = {yφ1
x (k), yφ2

x (k), yφ3
x (k), yφ4

x (k)} (1)

Yx =



yφ1
x (1) yφ2

x (1) yφ3
x (1) yφ4

x (1)

yφ1
x (2) yφ2

x (2) yφ3
x (2) yφ4

x (2)

...
...

...
...

yφ1
x (k) yφ2

x (k) yφ3
x (k) yφ4

x (k)

yφ1
x (k+1) yφ2

x (k+1) yφ3
x (k+1) yφ4

x (k+1)

...
...

...
...

yφ1
x (Mx) yφ2

x (Mx) yφ3
x (Mx) yφ4

x (Mx)


(2)

Step 2: Rolling window for extraction.
A rolling observation window of size τ starts at a certain time
t and ends at t + τ . It remains fixed in size and moves along
the collected data by the SmS. This window serves both real-
time and offline measurements, and is also called as an ob-
servation window. It has two advantages: grouping measure-
ments of the same parameter to enhance data reliability and
reducing computation time by processing only the data within
the time period τ without repeating calculations for each new
data point. The rolling window technique confirms fault de-
tection through comparison and validates hardware updates.

Step 3: Observation time sub-matrix.
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The observation window includes qx observations from SmS
x due to its own sampling period Tex. As depicted in the ma-
trix (3), the purple lines are the sub-matrix and are extracted
from the Yx observation matrix. At time t = k∗Tex, the sub-
observation matrix yτx,k of size (qx ∗ 4) is extracted from the
temporal matrix Yx of each SmS at a specific moment k. The
Sub-matrices are extracted according to the condition given
in Eq. (4) to ensure that a minimum of two points per SmS
sub-matrix are extracted.

Yx =



yφ1
x (1) yφ2

x (1) yφ3
x (1) yφ4

x (1)

yφ1
x (2) yφ2

x (2) yφ3
x (2) yφ4

x (2)

...
...

...
...

yφ1
x (k+1) yφ2

x (k+1) yφ3
x (k+1) yφ4

x (k+1)

yφ1
x (k+2) yφ2

x (k+2) yφ3
x (k+2) yφ4

x (k+2)

...
...

...
...

yφ1
x (k+h) yφ2

x (k+h) yφ3
x (k+h) yφ4

x (k+h)

...
...

...
...

yφ1
x (k+qx) yφ2

x (k+qx) yφ3
x (k+qx) yφ4

x (k+qx)

...
...

...
...

yφ1
x (Mx) yφ2

x (Mx) yφ3
x (Mx) yφ4

x (Mx)


(3)

(k + qx) ∗ Tex − (k + 1) ∗ Tex ≤ τ (4)

Y τ
x,k =



yφ1
x (k+1) yφ2

x (k+1) yφ3
x (k+1) yφ4

x (k+1)

yφ1
x (k+2) yφ2

x (k+2) yφ3
x (k+2) yφ4

x (k+2)

...
...

...
...

yφ1
x (k+h) yφ2

x (k+h) yφ3
x (k+h) yφ4

x (k+h)

...
...

...
...

yφ1
x (k+qx) yφ2

x (k+qx) yφ3
x (k+qx) yφ4

x (k+qx)


(5)

Step 4: Matrix checking.
Once extracted, the sub-matrices are then checked for their
size and values using the algorithm presented in Figure 3.
The check of the matrix size allows to determine whether the
SmS concerned was able to perform observations or not. Dur-
ing this step, it should be noted that software failures are also
a possibility. However, it is necessary to emphasize that our
focus is solely on hardware failures. The absence of observa-
tions indicates that a hardware failure affects the SmS x. This
check is then carried out on all matrices in order to count the
number of SmS in service.

For the matrices containing observations, each column (cor-
responding to the observations of a specific parameter with
from the sensors of the identified SmS) is extracted. The ob-
tained data are valid if they contain at least two points, they

Figure 3. Checking sub-matrix for detections

are used later. If they contain more than three points, their
values are compared to detect if they are close enough. When
all values are identical, the constant is identified and named
α. This means that the sensor is blocked and only gives the α
value, and that a hardware problem has occurred. These data
are excluded from the concatenation. If the values are differ-
ent, they are valid and concatenated. From these checks, a
detection matrix is built. The detections are represented by a
matrix denoted Dτ

s,k, of the form of matrix given in Eq. (6).
In this matrix, the following notations are used: ni is the num-
ber of active SmS for parameter φi, mi is the list of identifiers
of SmS without observations (missed observation) during pe-
riod τ and bi is also a list of identifiers of SmS with a failure
of type blocked LCS (blocked observation) during period τ .

Dτ
s,k =

 n1 n2 n3 n4

m1 m2 m3 m4

b1 b2 b3 b4

 (6)

Step 5: Analysis of detection matrix.
The analysis of the detection matrix enables the identification
and transmission of detection and diagnostic processes via the
GUI, based on the interpretation of the expert. The detection
matrix also facilitates the detection and early diagnostic by
the maintenance team. It is compared to the previous one, if
available, and only changes are reported to the GUI. Depend-
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ing on its value of α, a diagnostic can be established. Differ-
ences with the previous detection matrix prevents redundant
alerts (every τ ), which is particularly useful for maintenance.
Therefore, only changes are identified, which enable failures
and reconfigurations pertinent and verified.

Figure 4. φτ
i,x extraction and concatenation.

Step 6: Concatenation and outlier exclusion.
After the analysis step, all valuable data are concatenated and
the invalid data are excluded. As shown in figure 4, these
data are stored in a column. φτ

i,x represent observations of a
physical parameter φi from the SmS x. All data from all SmS
are concatenated in one column noted φτ

i,s. This column rep-
resents observation data of a physical parameter φi from the
station s. This concatenation step is applied to all measured
parameters of the station. Once the concatenations are done,
the values contained in the φτ

i,s columns are submitted to the
median vote.

Step 7: Median vote.
The voting algorithm employed in this study utilizes the me-
dian to synthesize all parameter values and generate a sum-
mary matrix for the station. The median-based voting method
involves arranging the values of φτ

i,s in ascending order and
selecting the value at position qx/2 in the case of an odd num-
ber of values, while for an even number of values, the average
of the values at position qx/2 and (qx + 1)/2 is computed.

Step 8: Synthesis by parameter.
The resulting set of values obtained by the median vote rep-
resents a temporal sub-matrix observation of the station, en-
compassing all physical parameters, denoted as Sτ

s,k, col-
lected at the station level for a specific sampling interval τ .
This step serves as a data resampling process, whereby the
sub-matrix is concatenated with the previous one on a general
temporal matrix denoted Ys which is consisting of Sτ

s,k. Af-
terwards, the resulting matrix and detection matrix are trans-
formed into a suitable set of alerts and curves, which are made
available and transmitted to the relevant authorities via the
GUI. This allows for real-time monitoring and prompt inter-

ventions in the event of significant pollution incidents.

4. APPLICATION

The study being presented was conducted as part of the
BOLDAIR project, which is funded by the Occitanie region
and involves the participation of ADEME. The project is be-
ing carried out within the CCPVG (Communauté de com-
munes Pyrenees vallées des gaves) in the central Pyrenees
mountain area in the South-West of France. The initial de-
ployments of the project were implemented in the city of
Argelès-Gazost, and the research described in this paper was
conducted in this specific context.

4.1. Measuring station technical setup

The measurement station is installed on an external wall of
an administrative building, positioned one meter away from
the wall and protected from environmental factors such as
wind and sunlight that may cause measurement inaccuracies.
The sampling duration is set to approximately 12 minutes
(Tex), and the observation window duration is one hour (τ )
to have at least three observations per each SmS. The mon-
itored physical parameters are Temperature (T), Humidity
(H), Pressure (P), and Particulate Matter less than 10 µm in
diameter (PM10).

From a technical standpoint, the measurement station com-
prises three SmS, a power supply unit, and an Aggregator.
The aggregator is based on a Raspberry Pi connected in WiFi
to an Internet access point. The power supply unit provides
electricity to the SMS and Aggregator. The SMS module con-
sists of two LCS (SdS011 and BME280) selected for their es-
tablished use in similar projects. These sensors are connected
to an ESP32 microcontroller via an Inter Integrated Circuit
(I²C) bus which is a three-wire connection that facilitates sen-
sor replacement. Furthermore, this type of connection allows
the ESP32 to detect sensor presence and to provide a specific
value in the case of a malfunction. For instance, a value of
zero indicates the absence of a sensor.

In terms of communication, the desktop application for deci-
sion makers, which is a web client, connects directly to the
aggregator node. This allows for convenient access to phys-
ical parameter readings and alerts, all through a single inter-
face. The interface itself displays various curves and widgets,
which are represented in the Figure 5.

4.2. Results

The data presented in this section are observations from the
measurement station in Argelès-Gazost municipality from
February to May 2022. The graphs displayed were generated
from the GUI connected to the aggregator. Figure 5 compiles
the raw data for Humidity and PM10, excluding Temperature
and Pressure due to similar behavior in terms of detection. In-
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Figure 5. Aggregator output with detections.

deed, only complete SMS hardware failures were detectable
since no other problems occurred. However, PM10 LCS are
more sensitive to external conditions and have shown differ-
ent types of failures. Therefore, the following figures will be
presented for the physical parameter of PM10 due to its rel-
evance to the proposed method employed in this paper. SmS
1, 2, and 3 are respectively named Arg12b1f, Arg12b2f, and
Arg12b3f. Hourly medians (in red) are derived from resam-
pling all observations of PM10 using the proposed method
with a rolling window of size τ . The aggregator output (in
black) and detections (red vertical bars) are shown. In Figure
5, red bars indicate missing sensor observations, green bars
indicate restoration to normal, and blue bars indicate sensors
blocked at a constant value identified as α. This Figure high-
lights missing SMS detections for all parameters and shows
different detections depending on the measured parameter,
enabling targeted intervention at the station level. Notably,
elusive failures are detected through alternating failure and
return-to-normal patterns, as shown for SmS 2 in the figure.

The voter and hourly median curves are indistinguishable
when everything is functioning properly, as is the case for
the humidity parameter in Figure 5. It is interesting to exam-
ine the difference observed between the voter and the hourly
median during the first detection of a missing sensor and a
blocked sensor. Figure 6 shows a reproduction of the pre-
viously observed configuration over a longer period of time.
The detection matrix confirms the blocked values: LCS from
SmS 1 at α = 4 and LCS from SmS 2 at α = 0 for non-

response. So, there is a divergence between the voter and the
hourly median. The method presented in this paper excludes
blocked values, providing central values closer to the contex-
tualization proposed by the detection matrix.

When blocked values are excluded, the voter is concentrated
on the central value corresponding to SmS number 3, whereas
the median is influenced by the blocking of SmS 1 at α = 4.
The situation is worse when the PM10 sensor on SmS 2 also
fails to communicate with α = 0: the median corresponds to
the blocked value in the middle α = 4, while the last SmS
continues to operate correctly. With this method, the voter
gives the result of the last SmS in service.

The methodology employed involves utilizing a measure-
ment station equipped with LCS sensors, which not only en-
hances the reliability of observations but also provides con-
textual information through fault detection. This approach
ultimately contributes to the overall robustness of the obser-
vations made.

The methodology described allows maintenance teams to ef-
fectively locate faulty sensors and, through feedback, to iden-
tify observation patterns related to specific failures. This ap-
proach also facilitates the detection of elusive failures and
their complete failure in the future, as some values may
evolve to be locked to a specific value over time during ob-
servations. It should be noted that a long-term goal of this
research is to integrate the detection method with a knowl-
edge base, in order to improve the automatic detection and
explanation of failures by exploiting the accumulated exper-
tise.

Finally, connection issues associated with missing SmS are
detected based on the number of sensors in service for each
parameter. A connection problem of an SmS is identified, in
particular, by the elongation of its sampling period. Thus,
hardware failures and needed reconfigurations are directly
identified by the aggregator, along with annotations done in
the GUI on the graphs of each physical parameter.

4.3. Discussion

This study seeks to show that even with potentially incon-
sistent low-cost sensors (LCS), long-term measurements can
still be successfully carried out. Despite their random fail-
ure and the proposed method to identify failing sensors while
maintaining measurement continuity even in the occurrence
of a failure event.

The objective is to highlight that in the context of LCS de-
ployment, these sensors typically have an average lifespan
of no more than four months. However, the goal is to per-
form measurements throughout the year. It appears that with
a knowledgeable maintenance team ready to intervene, the
station’s lifespan can be extended through these failure detec-
tions and preliminary diagnoses. The practical applications of
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Figure 6. Typical influence on median.

these findings aim to enhance the longevity of an LCS-based
measurement station. The implications suggest that the suc-
cess of a self-configuring station will rely on the quality of
its alerts and the maintenance team’s ability to address issues
before all SmS units fail and cease to function.

These findings are in line with existing literature on how to
use LCS to monitor air quality, and the implications suggest
that it is necessary to continue to find ways to circumvent
LCS failures until the technology can be made more reliable.

4.4. Results synthesis

The results demonstrate the relevance of using the proposed
method to enhance the observations of the measuring station
while taking into account the failures of the LCS. The method
enables the Aggregator to adapt the synthesis according to the
events affecting the LCS, and also provides detection for con-
textualizing the data. Furthermore, it facilitates comprehen-
sion of the LCS malfunctions to ease diagnostics and inter-
ventions by the maintenance team.

5. CONCLUSION

This paper presented a method to improve data reliability for
an air quality measurement station using LCS. The method
detects LCS failures by comparing observations from SmS in
TMR. This approach identifies sudden hardware failures, in-
forming the maintenance team. Combining this method with
successful interventions ensures consistent data availability.

However, the method has limitations. It may not effectively
detect sensor drift and degradation-related failures in LCS.
Variability among LCS measurements can indicate the be-

ginning of failure. The spatial configuration and design of
the measurement station boxes may affect LCS observations.
The assumption that the aggregator never fails is unrealistic,
and its failure can lead to data loss.

In the future and to overcome the limitations, it would be ben-
eficial to investigate potential sensor degradation or construct
failure indices for other types of sensors to predict the quality
of station components. Outlier detection methods will be im-
plemented to introduce mobile thresholds for detecting out-
liers and to construct failure indices based on SmS measure-
ment errors. Comparing such observations with those of con-
ventional stations could be a topic of discussion for the vali-
dation data and even for some better calibration feature. Ad-
ditionally, developing confidence or quality indexes for mea-
surements would be valuable to detect sensors that are failing
due to continuous degradation.
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NOMENCLATURE

N number of physical parameters monitored, N ∈ N
x SmS number with x ∈ {1, ..., 3}, x ∈ N
Tex sensor n° x sampling period
τ station sampling period x such that τ > 2Tex
τ observation window size
k kth sampling period with t = k ∗ Tex
φi physical parameter number i, i ∈ {1, ..., N}, i ∈ N
Mx number of SmS x observations
Yx SmS x observation time matrix (Mx ∗N)
yφi
x (k) parameter φi measurement by SmS n° x at time k
yx,k SmS x observations at time k
qx number of SmS x observations during τ
yτx,k Yx sub-matrix (qx ∗N) at time k during τ

φτ
i,x yτx,k column containing the observations of φi

φτ
i,s φτ

i,x concatenation from all SmS
Sτ
s,k summary of SmS observation between t and t+ τ

Dτ
s,k detection matrix between t and t+ τ

α constant observation of a blocked LCS during τ
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