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ABSTRACT 

Although monitoring system can detect abnormality of 

sensor reading in air-conditioning equipment, the root cause 

of the abnormality may not be sensor failure but other 

failures such as gas shortage. We propose new method that 

estimates the cause by the following steps. Firstly, 

regression model predicts the normal readings of multiple 

sensors (e.g., thermistor) for a given operational condition. 

Secondly, the gap between measured and predicted values is 

calculated for each parameter as a degradation indicator. 

Finally, our failure diagnosis model estimates the cause by 

considering degradation indicators of multiple sensors. Our 

evaluation verifies the effectiveness of our method. 

1. INTRODUCTION 

Reducing downtime of hearing, ventilating, air conditioning, 

and refrigeration (HVAC&R) units is of crucial importance. 

One way to realize reduced downtime is to accurately 

diagnose the failed system and remove the root cause as 

soon as possible. Skilled engineers can complete the 

diagnosis accurately. However, it is unrealistic to secure a 

sufficient number of skilled engineers. By introducing a 

system that automatically and accurately diagnoses failures, 

therefore, it becomes possible to complete the repair at the 

first visit and reduce workload on engineers, not demanding 

sophisticated skills for engineers. Furthermore, more 

accurate diagnostics and systems that can identify correct 

spare parts in need will make possible to automatically 

arrange for spare parts, enabling swifter repairment. This 

paper proposes a new method for Fault Detection and 

Diagnosis (FDD) purposes described above. 

 

Generally, an error code is often issued from failed 

HVAC&R systems to indicate abnormality that has 

occurred to them. These error codes can be informative for 

FDD. For some error codes, however, it is difficult to 

identify the root cause. For example, in the case of an error 

code indicating refrigerant leaks from HVAC&R system, 

where a significant amount of gas has leaked from units, it 

is not possible to determine whether the refrigerant is really 

decreased or sensor that measures the refrigerant level is 

faulty. In addition to error code issued by equipment, 

therefore, it is necessary to jointly use FDD system to 

achieve more accurate and precise diagnosis. 

 

FDD is often realized with rules (Katipamula et al., 1999), 

which have been widely used for decades. One of the 

advantages of this approach is its high interpretability of 

decisions made by algorithm. Being able to incorporate 

expert knowledge into algorithm is another advantage to 

note. Moreover, rules can be created with a small amount of 

data, or even without any data, unlike machine learning or 

deep learning methods described in the rest of this chapter. 

On the other hand, rules also have some potential drawbacks. 

For example, actual HVAC&R units have too diverse 

operation conditions and failure modes to create optimized 

rules for each state. Furthermore, actual sensor readings are 

sensitive to ambient temperature, installation environment, 

and control conditions. Thus, it is difficult to create rules to 

isolate faulty operations for all patterns. Because rules 

reflect expertise of engineers, moreover, they are not easy to 

maintain. Indeed, it is necessary to re-create and adjust rules 

every time new model of HVAC&R is launched. 

Katipamula et al. (2005) collectively summarized 

advantages and disadvantages of rules including those 

described above. 

 

Recently, Machine Learning (ML) and Deep Learning (DL) 

approach becomes more prevalent in FDD activity 

(Chakraborty et al., 2019; Tun et al., 2021; Zhang et al., 

2023). In line with remarkable progress on ML and DL 

techniques, this trend led to dramatic increase in the amount 

of data available from HVAC&R units with the help of IoT 

devices. Data-driven approaches that combine large 

amounts of data with ML are capable of detecting and 

classifying faults with high accuracy. On the other hand, one 
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of the disadvantages of such approaches is low 

interpretability of decisions made by algorithms. Although 

ML outperforms in extracting important features for 

diagnosis from large amounts of data, these features are not 

necessarily explanatory enough to users, which may hinder 

these approaches from being widely acceptable to them. In 

addition, data of failed units, which is indispensable for 

developing ML algorithms, can be limited. Since failure 

patterns of HVAC&R units are diverse and only small 

fraction of them actually fail in the market, it may be 

difficult to secure enough data to train algorithms for all 

failure modes. 

 

This paper proposes a hybrid method that combines rules 

and ML to overcome issues described above. The method 

consists of two steps: (1) Prediction of normal sensor 

readings for a given HVAC&R unit with ML approach, and 

(2) rule-based failure mode classification focusing on 

deviation of actual sensor readings from predicted ones. 

 

In step (1), firstly a ML model is trained with actual 

operation data of various HVAC&R units in the market. 

Secondly, the model is used to predict normal values of 

sensors for a given installation environment and control 

conditions. Since the normal value prediction model in this 

method learns a large number of HVAC&R data in the 

market, it can predict normal values for various ambient 

temperature conditions, installation environments, and 

control conditions. Previous studies (Mirnaghi et al., 2020) 

suggested that data-driven approach can detect faults more 

accurately for complex physical systems including 

HVAC&R units than conventional methods using physical 

models. 

 

In step (2), the difference between the predicted value in 

step (1) and actually measured value of sensor is derived. 

This gap is defined as “the degree of abnormality” of the 

sensor. Next, rule-based classification of failure modes is 

performed focusing on this degree of deviation. These rules 

are set based on domain knowledge of HVAC&R units. 

Specifically, different failure mode results in different 

combination of these degrees of deviation, which can be 

used inversely to classify failure mode. One advantage of 

our hybrid method is that ML model with the help of a large 

amount of normal data mitigates differences among 

HVAC&R models. Moreover, using a simple indicator, the 

difference between actual measurement and prediction to 

determine failure modes, enables high interpretability of the 

diagnosis results. The fact that normal data is easy to obtain, 

unlike failure data, also enhances the applicability of this 

method. 

 

Our organization has already applied this approach that 

focuses on the discrepancy between actual and predicted 

normal value with ML model, in order to detect thermistor 

degradation and refrigerant leak (Kimura et al., 2022). This 

paper extends this method further to classify not only 

specific faults such as thermistor degradation or refrigerant 

leak, but also various failure modes based on the degree of 

discrepancy. This paper describes an integrated diagnostic 

system for commercial HVAC&R units that calculates the 

degree of deviation of multiple variables and accurately 

diagnoses failures by utilizing these multiple indicators. 

 

This paper is organized as follows. Section 2 is devoted to 

describing our method in a sequential manner; data 

preparation, model training, and performance evaluation. 

Section 3 summarizes the result of fault mode classification 

and demonstrates the advantages of our model. Section 4 

discusses the limitation of our model and possible extension 

for wider applicability. Section 5 is to summarize this work. 

2. METHODS 

The procedure to verify our approach consists of 5 steps. 

1. Extracting data from data sources 

2. Training normal value prediction models 

3. Creating FDD model with rules 

4. Diagnosing failures 

5. Evaluating diagnosis result and performance 

The overall flow is shown in Figure 1. 

2.1. Extracting data from data sources 

In this paper, we choose commercial air conditioner (AC) 

among HVAC&R units as a target for FDD. Generally, 

more than 20 sensors are installed with commercial ACs, 

and their readings are collected on a regular basis as 

operating data. The proposed method uses operation data of 

commercial ACs in the market, error code history issued by 

ACs, and their repair history by engineers. Operating data is 

in the form of time-series for various thermistors, pressure 

sensors, expansion valves, compressors, control modes, and 

so on. Error code history is used to roughly determine 

whether AC of interest is normal or faulty. Repair history 

describes actual work conducted by engineer. By utilizing 

this data, it is possible to identify the root cause of failure of 

faulty equipment, which serves as correct label in 

supervised training of ML model as described below. This 

label is also used to evaluate classification accuracy of our 

FFD algorithm. 
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Figure 1. Process flow of our FDD system 

2.2. Training normal value prediction models 

Figure 2 shows how our normal value prediction model 

works. Blue line corresponds to actual sensor reading, while 

orange line describes predicted values by our model 

assuming the unit is not faulty. Comparison of these two 

values gives us clear insight on “abnormality level” of the 

unit, because they go more divergent as degradation of the 

unit proceeds (red arrow in Figure 2). 

 

Only normal units which have not issued any error codes 

ever are used to train the normal prediction model. The error 

code history is used to classify normal and faulty units. In 

the training of models, the following data preprocessing is 

performed. 

 

 
Figure 2: Schematic diagram of normal value prediction 

model 

2.2.1. Selection of data items for training 

Although various sensor data is collected in the market 

operation data, variables used as inputs to train the normal 

value prediction model are carefully selected to those 

considered important for system’s refrigerant 

characteristics. 

2.2.2. Derivation of explanatory variables 

Some variables are more useful when combined with other 

variables for training. For example, it is known that 

Discharge Super Heat (DSH), which measures the 

temperature increase after compression, is an important 

variable to describe the state of refrigerant circuit. DSH is 

calculated discharge temperature measured from high 

pressure saturation temperature. Similarly, we convert some 

raw variables to combined ones for more efficient training. 

2.2.3. Selection of equipment operating conditions 

Since sensor values may not be stable just after AC is turned 

on or cooling (heating) mode is switched to heating 

(cooling) mode, we remove data obtained in such a transient 

state. Therefore, we use only steady-state operation data not 

only for training but also for diagnosis, assuming it 

contributes to reduce the chance of misjudgment in FDD. 

 

2.2.4. Model training 

Normal value prediction model is trained for each sensor. 

When training each model, we let a sensor to predicted be 

target variable, while the other sensors be input variables. 

For example, when we train a normal prediction model for 

thermistor A, sensors other than thermistor A are used as 

input variables to predict thermistor A. This corresponds to 

train the prediction model for thermistor A’s normal 

readings for a given operation conditions (i.e., the other 

sensors), learning their mutual correlation behind. Besides, 

normal prediction model is trained separately for each 

operating mode (e.g., cooling or heating) as correlation 

among refrigerant to be learned varies depending on 

operation mode. In addition, training is performed for each 

AC model, as the number of sensors, their location, and 

correlation among sensors differ significantly over AC 

models. Several dozens of ACs in the market are used to 

train normal value prediction model for each AC model. 

The length of data for training is set to be one year to 

include all seasons. After pre-processing steps above, the 

value normal prediction model is trained with ML. We use 

LightGBM (Ke et al., 2017), a gradient boosting method, 

for creating models, where a sensor to predict as output 

variable and the other sensors as inputs. 
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2.3. Creating FDD model with rules 

The deviation of actual sensor reading from those predicted 

by ML model is defined as the degree of abnormality for 

that sensor. The proposed method calculates deviation for 

all variables which are considered important for refrigerant 

characteristics and uses them for diagnosis. By making 

diagnosis on deviation, not sensor readings themselves, 

FDD algorithm can be common over different AC models. 

This means that it is no longer necessary to develop rules for 

each AC model, which improves the maintainability of FDD 

algorithms. 

 

The FDD logic is expressed by rules based on the degree of 

deviation. These rules are created from domain knowledge 

on HVAC&R systems and adjusted to maximize the overall 

performance of diagnosis, whose indicator is described in 

subsection 2.5. Table 1 provides an idea on the FDD logic. 

For example, if an AC unit has a deviation for sensor1>a 

and sensor6<b, FDD logic diagnoses gas shortage as the 

root cause of failure. The FDD logic can be created for each 

failure mode. This table can propose more than one failure 

when multiple failures happened simultaneously, as long as 

an AC unit satisfies those conditions (e.g., broken suction 

thermistor and broken deicer thermistor). 

 

2.4. Diagnosing failures 

With normal value prediction model and FDD table, we 

execute FDD for AC units of interest. Firstly, the same 

preprocessing as described above is executed to operation 

data to be diagnosed. The predicted value is derived for all 

sensors by making use of normal value prediction model 

trained above. Secondly, the difference between actual 

measured value and predicted value is calculated as the 

degree of deviation for all sensors. Thirdly, the deviation 

and measured values are input into the FDD logic to isolate 

the failure mode. In what follows, the post-processing to 

determine final output is outlined. 

1. While the degree of deviation is calculated for each 

data point in the operating data, our approach does not 

directly use them for final output. This is because 

noise on derived deviation can be present, and it can 

lead to sporadic large deviation for normal sensor. 

This is partly due to insufficient training of normal 

units and should be addressed. Unfortunately, noise 

and deviation due to failure can be difficult to separate, 

because both of them appear as “deviation from 

normal”. In order to prevent misdiagnosis due to noise, 

final output of FDD is made over a certain time range 

as a group. To be more specific, our FDD concludes 

failure mode only when large deviation is confirmed 

for a certain fraction of datapoints over a couple of 

days. This helps FDD correctly distinguish true 

failures from noises, because deviation by failures 

basically keeps growing unlike noises, which could 

suddenly be back to normal state. Therefore, FFD over 

a range of datapoints is of great use. 

2. In the cause of multiple faults confirmed, furthermore, 

total duration of faulty conditions is displayed in order 

to prioritize failures to be fixed. For example, duration 

of faulty operations as shown in Table 2 makes 

Table 1: FDD logic based on deviation 

 

Failure 

Deviation for each sensor 

Sensor 

1 

Sensor 

2 

Sensor 

3 

Sensor 

4 

Sensor 

5 

Sensor 

6 

Sensor 

7 

Sensor 

8 

Sensor 

9 
Gas 

shortage 
>a     <b    

Broken 

suction 

thermistor 

 >c    <d    

Broken 

deicer 

thermistor 

  >e     >f  

Broken 

subcool heat 

exchanger 

gas pipe 

thermistor 

 >g       <h 

Degraded 

compressor 
    >i  >j   
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possible to list more than one faults, and the level of 

each abnormality can be expressed by their duration. 

 

2.5. Evaluating diagnosis result and performance 

In this subsection, we evaluate the performance of our FFD 

approach with test dataset. We choose fault candidate with 

longest duration as output for this evaluation if multiple 

faults are detected. As the labels of failure are required to 

evaluate the performance of our model, repair history of 

engineers is used for that purpose. Label referred here 

corresponds to the spare part of AC that is replaced by 

engineer, such as suction thermistor, high pressure sensor, 

outdoor electronic expansion valve, compressor, gas 

shortage, and so on. 

 

In this evaluation we focus on how accurately our FDD 

model can identify the failure modes for given failed units. 

After confirming that normal units in test dataset are not 

classified as failure, we then perform N-class classification 

for failed units in test dataset. As evaluation indices, we 

calculate precision, recall, and f1 score for each failure 

mode. Each indicator is defined as follows. 

 

 

 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(1) 

 

 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(2) 

 

 

 

𝑓1 𝑠𝑐𝑜𝑟𝑒 =
2 ×  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(3) 

 

3. RESULT 

We investigate the performance of proposed FFD model to 

classify various failure modes by using discrepancy for all 

sensors. Specifically, we calculate precision, recall, and the 

f1 score. Each indicator is calculated for each failure mode. 

Table 4 shows the confusion matrix for one failure mode: 

gas shortage. In this case, gas shortage is treated as positive, 

and the other failures are defined as negative. 

 

Table 5 summarizes the performance for 5 failure modes, 

for which >5 failed samples are found in dataset. The f1 

score is 0.8 or higher for all five failure modes. These 

results suggest high performance of the proposed method, 

though further study with more samples is required. 

 

The method guarantees high interpretability with FDD 

results. To demonstrate that the pattern of deviations in 

failed data is consistent with the physics of the refrigerant 

cycle, we visualize both actual sensor readings and 

predicted normal values of a unit in gas shortage in Figure 

3. Top panel refers to discharge pipe temperature, while 

bottom panel is expansion valve. In this case, measured 

values are greater than predicted normal values both in 

Table 5: Performance of FFD model 

 
Failure precision recall F1 score Sample 

size 

Gas shortage 1.00 0.80 0.89 20 

Broken 

suction 

thermistor 

1.00 0.94 0.97 16 

Broken 

deicer 

thermistor 

1.00 1.00 1.00 19 

Broken 

subcool heat 

exchanger 

gas pipe 

thermistor 

1.00 0.83 0.91 6 

Degraded 

compressor 

1.00 0.67 0.80 15 

 

 

Table 4: Confusion matrix in diagnosing gas shortage 

 

 
Predicted 

The others Gas shortage 

Actual 

The 

others 
78 0 

Gas 

shortage 
4 16 

 

 
Table 3: Definition of confusion matrix 

 

 
Predicted 

Normal fault 

Actual 

Normal 
TN 

(True Negative) 
FP 

(False Positive) 

Fault 
FN 

(False Negative) 
TP 

(True Positive) 

 

Table 2: Duration of faulty modes 
 

No Failure Mode Duration 

1 Failure Mode A 32 hours 

2 Failure Mode B 3 hours 

3 Failure Mode C 1 hour 
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discharge pipe temperature and expansion valve, which is 

typical for refrigerant circuits in short of gas. As the 

behavior of the discrepancy is quite consistent with the 

physics of the refrigerant cycle, we conclude that our FDD 

model is highly interpretable in its reasoning. 

 

Figure 3: Degree of deviation of a unit in gas shortage 

4. DISCUSSION AND FUTURE PROSPECTS 

The method proposed in this paper is demonstrated to be 

capable of identifying the root cause of failure with high 

accuracy for five failure modes (gas shortage, broken 

suction thermistor, broken deicer thermistor, broken 

subcool heat exchanger gas pipe thermistor, and degraded 

compressor). Because the eligibility of our method is 

currently limited, however, further work to extend its 

applicability to more failure modes and HVAC&R models 

is needed. In what follows we refer to possible extension of 

this model. 

4.1. Expansion of target models 

In this study, the target of our approach is limited to a few 

AC models, not all models in the market. Since the 

proposed method uses deviations as input for FDD 

algorithm, this method is expected to be common over AC 

models, unlike rules, which are basically needed to be 

developed for individual models. Therefore, study to 

expand target models is highly promising. 

4.2. Expansion of failure modes 

The failure modes examined in this study do not include all 

failure modes, although they are mostly major failure 

modes in real-world operation. In this paper we do not 

study the rest of failure modes simply because of 

insufficient number of samples for such modes. Extending 

eligibility of failure modes with more samples in the market 

can make our model more comprehensive and reliable. 

5. SUMMARY 

Accurate FDD when HVAC&R unit failed is fairly 

important for both customers in terms of reduced downtime 

of the units and engineers in terms of reduced man-hours 

for addressing failures. Although HVAC&R unit itself 

issues error codes in the event of failure, they may not be 

sufficient to identify the root cause of the failure. A 

common and useful FDD algorithm is rules, but they also 

bring some drawbacks such as maintainability. 

Therefore, in this paper, we propose a new FDD algorithm 

that focuses on the gap between actual sensor readings and 

those predicted by ML model for a given operation 

condition. We verify its performance for commercial ACs. 

Specifically, our model can correctly separate normal and 

faulty units, and classify 5 failure modes (gas shortage, 

broken suction thermistor, broken deicer thermistor, broken 

subcool heat exchanger gas pipe thermistor, and degraded 

compressor) with high accuracy. As a whole, the diagnostic 

accuracy of the proposed method is high enough to 

correctly isolate failed parts. Moreover, the proposed FDD 

logic has high interpretability for the diagnosis results. In 

future work, we expand target models and failure modes 

with more samples and improve overall diagnosis accuracy 

to make our model more comprehensive and reliable. 
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