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ABSTRACT 

Advances in machine learning (ML) techniques allow 

practitioners to generate substantial predictive value from 

historical data. Modern sensors generate vast amounts of data 

which inform prognostic health management (PHM) 

systems. As ML techniques continue to grow in importance 

for PHM, the system that manages and deploys ML models 

becomes critical for successful production software. Machine 

Learning Operations (MLOps) is centered around 

implementing continuous integration and deployment 

(CI/CD) practices in the context of ML applications. We will 

present MLOps designs for deploying machine learning 

based PHM software and discuss ML pipelines that automate 

data ingestion, model training, testing, deployment, and 

monitoring. The principles we will examine ensure model 

quality, performance, and software stability. We will call 

attention to important design considerations and demonstrate 

solutions for the full model lifecycle when building MLOps 

pipelines for PHM systems. 

1. INTRODUCTION 

Machine learning operations (MLOps) paradigms are 

revolutionizing data driven industries, allowing for more 

reliable and scalable ML software. When Designing ML 

systems, it is important to spend time considering model 

objectives and how to design a system that will help achieve 

such goals. In this paper we will discuss designing state of 

the art MLOps systems and its applications in prognostic 

health management (PHM). We will emphasize design 

considerations when processing raw sensor data and building 

machine learning based predictive systems. 

2. FROM DEVOPS TO MLOPS  

There are many goals when building MLOps systems. Model 

performance, stability, and reliability are often top priority. 

To discuss MLOps we must start with the ideas borrowed 

from Development Operations (DevOps). Many of the 

concepts and considerations in DevOps carryover to MLOps. 

We will summarize important DevOps concepts then discuss 

the specific ML tasks we must consider for MLOps. MLOps 

design principles use many of the core principals of DevOps 

to deliver reliable software. In a typical DevOps workflow, 

we design automated pipelines that initiate the building, 

testing, and deployment of software source code. Mojtaba 

Shahin et al (2017) provided a thorough review of approaches 

for continuous integration, delivery, and deployment. The 

expectations for MLOps systems are similar, ML models go 

through a process of training, testing, and deployment. 

Georgios Symeonidis et al (2022) published an overview of 

common tools used and two popular definitions of MLOps 

maturity levels. Although MLOps can encompass different 

standards and tools the goal is to automate as much of the 

process as possible. Both MLOps and DevOps strive for 

continuous testing and deployment to support software 

stability and rapid development. There is a lot of overlap 

between DevOps and MLOps. However, the specifics within 

pipeline steps and software requirements are quite different. 

In the next few paragraphs, we will discuss the two core 

elements of DevOps Continuous integration (CI) and 

Continuous Deployment (CD) how they are applied in the 

context of MLOps. We will also consider components that 

are exclusive to MLOps system designs. 

2.1. Continuous Integration  

Continuous integration (CI) is focused on pipelines that build 

and test software throughout development lifecycle. 

Continuously testing the source code as new features are 

added leads to cohesive software that can be deployed 

rapidly. The software will be built and automatically tested 

with every new push to release branches. If all tests pass, then 

the overall build will be successful, and the software version 

can proceed to the next step in the process. Dev teams must 

have a common code repository where all the app features 

and tests reside. When new code is committed to the repo it 

is important to set requirements such that all unit and 

integration test must pass before merging with the main 

branch. This will help protect the production code. Code 

should be committed often, and builds should be run 

regularly to ensure the app functions as expected, this allows 

for quick feedback from the automated software tests and 
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dependent teams. These concepts directly apply to MLOps 

systems. When new features are added, hyperparameters are 

updated or any of the code related to the model has changed 

developers to set automated tests that validate the model and 

associated code. For PHM systems model assertions should 

also include schema expectations and task specific assertions. 

Assertions based on expected database schemas and data 

quality will mitigate and help isolate data processing issues. 

This is particularly important when processing raw signal 

data. The specific tests will for an individual system will vary 

widely depending on the use case. In all cases, proper testing 

of our models and data prior to release will allow for more 

reliable models and predictions. 

2.2. Continuous Delivery/Deployment  

Continuous delivery and Continuous deployment (CD) are 

the two approaches for deploying software. In both 

approaches the goal is to regularly ensure that the software is 

ready for deployment and can served at any time. The main 

difference is that continuous delivery entails a manual 

process of promoting software to production while 

continuous deployment is a fully automated process. 

Depending on the use case there may be a preference for one 

over the other. However, we will focus on continuous 

deployment as most practitioners are striving for as much 

automation in the software development process as possible. 

We suggest striving for automictic deployment of updated 

source code once workflow and testing pipelines are 

complete. CD principals apply directly to MLOps. The 

differences for ML systems will be further discussed in the 

model deployment section. 

2.3. Data Validation 

Data quality is one of the most important factors we can 

monitor and control in ML systems. Robust data pipelines 

should be a high priority in producing reliable MLOps 

pipelines. The most common method for ensuring data 

quality is having specific schema requirements and tests that 

enforce expected schemas and data properties. Eric Breck et 

al (2019) focused on the topic of ensuring data quality. When 

ingesting raw sensor data, it is particularly important to 

specify constraints and expectations for the input data. This 

will help ensure that invalid signals do not reach the model. 

It is also suggested that all functions involved in the modeling 

process have unit test coverage. Often sample data sets or 

simulated data is used to test relevant functions and assertions 

are made for the expected results. It is common to aim for 70-

100% code coverage. Assertions can also be placed on code 

coverage prior to release. 

3. MLOPS SYSTEM DESIGN 

When designing MLOps systems there are many important 

design considerations. Making the right decisions early in the 

design process will help ensure stable deployment of ML 

software. Fig 1. an example MLOps design for pushing 

models to production. In this section, each of the major 

components will be discussed in detail. We will emphasize 

requirements that minimize bugs in ML systems and allow 

for confident deployments to production.  

 

 

Figure1. Example MLOps Design 

3.1. Model Development  

In the model development stage, there is a lot of flexibility. 

Many different modeling approaches can be explored. At the 

beginning of this stage, we need to define the initial data pull. 

If you are dealing with raw signals, there will need to be 

refinement and initial standardization of the data. Once the 

initial schema is defined, we can begin exploring the data. 

When developing a new model for your prediction task it is 

important to conduct exploratory data analysis (EDA). 

Visualizing your data and generating summary statistics 

often helps uncover unique characteristics of the data. These 

characteristics can help inform the feature processing and 

modeling process. Before developing new models, it is 

important to at least have three separate sets of the data. Prior 

to generating features for the data, we should have separate 

data sets for training, testing, and validation. Feature 

generation should be done after splitting the data. This helps 

ensure that information form the test and validation sets 

aren’t making their way into the training process. Feature 

processing and encoding should be conducted based on the 

characteristics of the data and goals of the modeling process. 
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Once feature generation is completed on the training set, we 

can move to training new models. We then use the test and 

validation data to estimate model performance. Various 

model types and hyperparameters can be evaluated to decide 

on a preferred model. If the model has sufficient performance 

metrics on the test and validation data, we can pass the model 

through our unit and integration tests. If the model passes all 

the tests, we can then mode the model into the staging 

environment in preparation for production deployment. 

3.2. Model Environments  

The three common stages for the model are development, 

staging and production. Most software can be deployed 

reliably in that set up. However, there are variations with 

additional environments. There are different branching 

strategies we can consider. Rakshith Subramanya et al (2022) 

discussed common branching strategies and the process for 

deploying code. For the model environments shown in Fig 1. 

we will consider development, release, and main branches. 

Where the development branch allows for model 

experimentation data modifications, and new features with 

minimal constraints. The release branch should contain 

planned features for release and is expected to be more stable 

and pass all automated tests. The release branch should be 

tested regularly and maintained to be ready for production 

deployment. The Main branch holds the code that is deployed 

live in production. It should be built and deployed regularly 

in the production environment serving predictions to 

customers or stakeholders.  

In the development model environment, we can make various 

modifications to the code and test out hyperparameters 

without concern of harming production. This model 

environment should be where model code in development 

branches are tested, model performance is measured, and the 

model is considered for progression to the staging 

environment. In the staging environment we will load the 

model and the model code tied to the release branch to 

thoroughly test performance and stability. Unit tests should 

also be conducted for code relevant to the model. Any user 

interface or API endpoint tied to the ML software should also 

be thoroughly tested at this stage. After the model has 

completed testing in both the development and staging 

environment, we can promote the model to production. In the 

production environment we can serve predictions and 

monitor live performance. In our example we discussed the 

deployment of both the model and associated code. It is 

important to note that there are deployment strategies that 

focus on deploying one or the other. It is not always required 

to pass both the model and associated code through all model 

environments. In many cases it is sufficient to only pass the 

model object or model code. 

3.3. Model Testing 

Model testing is dependent on the model use case but 

generally we want to consider model performance, stability, 

and data validation. Performance is often a high priority so 

we should set a threshold for model performance as the object 

is passed through the model environments. Performance 

metrics vary depending on the task. In the context of 

classification metrics such as accuracy, precision, recall, F1, 

and F2 scores are potential measurements. For regression 

tasks mean squared error (MSE), root mean squared error 

(RMSE), mean absolute error (MAE), mean absolute percent 

and error (MAPE) are commonly used. There are many other 

regression and classification metrics to also consider. Naeem 

Seliya et al (2009) published a study on classifier 

performance metrics that cover many options. Alexei 

Botchkarev (2019) has published a similar analysis looking 

at performance metrics in the context of regression 

algorithms. The data validation steps discussed earlier should 

also be considered. Schama assertions and data quality tests 

should also be included in automated tests. There are many 

tools used to automate tests. 

Some programs may require prediction stability tests to 

ensure that there aren’t large variances in predictions while 

others should allow to predictions. We an also compare the 

performance of the production model to performance of the 

model in staging. Performance thresholds for the promotion 

of a new model can also be set here. As we design our 

pipelines we want to automate as much of the process as 

possible with the goal of crating fully automated MLOps 

pipelines. Model reproducibility is also something we want 

to keep in mind when designing the product. This will help 

with debugging and reverting model versions if there are 

unforeseen production issues with newer models. Odd 

Gundersen et al (2022) published a review of current ML 

platforms and conducted an analysis of reproducibility for 

each of the platforms discussed. 

3.4. Model Deployment 

Model deployment is the last stage in an ML model lifecycle. 

After the model and associated code have gone through 

testing in the development and staging environments the 

model should be ready for production deployment. There are 

many approaches for serving predictions two common 

methods are serving an API endpoint that generates 

predictions and creating databases that store predictions that 

the app references. The approach will vary depending on 

broader software requirements. There are many cloud 

systems and tools to choose from. The most widely used 

cloud providers are Amazon Web Services, Azure, and 

Google Cloud. We recommend designing a system to be 

cloud agnostic. It is common for large scale systems to 

interact with multiple different cloud services. Nicolas Ferry 

et al (2013) and Laura Savu (2011) provide detailed 
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information on cloud deployment models and security 

considerations.  

We can streamline deployment by scheduling pipelines that 

automatically promote source code from the main branch and 

reference models in the production model environment. We 

can also automate training and testing of resulting models. 

We can promote the model and relevant code through the 

model environments given performance is above specified 

thresholds and all data validation and tests are successful at 

each stage. Once a model is released to production it is 

important to monitor live performance. Live monitoring 

helps identify production issues. Estimating model drift and 

setting alerts or automated training jobs in response to drift 

can help avoid performance issues in production. 

4. CONCLUSION 

In this paper we discussed methods for building MLOps 

systems. We reviewed the relationship between DevOps and 

MLOps, the areas of overlap such as the expectations for 

continuous integration, continuous delivery, and continuous 

deployment. We also discussed the specifics to be considered 

for MLOps systems including data validation, model 

development, model testing, model environments, and model 

deployment. MLOps designs will vary based on the objective 

and use case for each individual team. When building ML 

based PHM systems, data validation and model testing will 

be paramount. This will minimize software downtime and 

help mitigate production issues. MLOps system deigns 

should aim for as much automation as possible to improve 

the ML development process. 
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