
Pipe Corrosion Inspection System based on Human-in-the-Loop Machine 

Learning  

Toshihiro Shimbo1, Yousuke Okada2, and Hitoshi Matsubara3 

1Mitsubishi Gas Chemical Company, Inc., Chiyoda-ku, Tokyo, Japan 

toshihiro-shinbo@mgc.co.jp 

2ABEJA, Inc, Minato-ku, Tokyo, Japan 

yousuke@abejainc.com 

3The University of Tokyo, Bunkyo-ku, Tokyo, Japan 

matsubar@ai.u-tokyo.ac.jp 

 
ABSTRACT 

The aim of this study was to improve the efficiency of 

external corrosion inspection of pipes in chemical plants. 

Currently, the preferred method involves manual 

examination of images of corroded pipes; however, this 

places significant workload on human experts owing to the 

very high number of such images. To address this issue, we 

developed an artificial intelligence (AI)-based corrosion 

diagnosis system and implemented it in a factory.   

Initially, interviews were conducted to understand the 

decision-making processes of human experts. Subsequently, 

we converted their tacit knowledge into explicit knowledge, 

which was used to define the training data for the machine 

learning (ML) model. The predictions of the ML model were 

compared with the manually obtained results, exhibiting an 

accuracy of 70 %.  

The proposed architecture was based on human-in-the-loop 

ML. It included a process to retrain the ML model using 

manual results gathered during operation. It was operated 

using a collaborative approach, in which human experts 

supported the ML model under development. 

The proposed model enhanced the efficiency of the 

inspection process successfully. 

1. INTRODUCTION 

  The central aim of Prognostics and Health Management 

(PHM) take necessary decisions and actions to safeguard 

system health. This requires the detection and location of 

failures, diagnosis of their causes, and prediction of the 

remaining life expectancy of systems and their components, 

such as social infrastructure and products. In recent years, the 

amount of available data has increased significantly owing to 

advances in measurement and communication technologies, 

such as the Internet of Things (IoT). To deal with this 

burgeoning volume of data, several artificial Intelligence 

(AI)-based tools have been developed and machine learning 

(ML) approaches are on the rise.  

Japanese chemical companies, initially buoyed by economic 

growth in Asia, are currently at an important crossroads, 

facing challenges such as the relocation of manufacturing 

bases overseas, the retirement of skilled workers due to an 

aging population, and productivity reviews due to work style 

reforms. Thus, they need to improve productivity and 

reinforce their international competitiveness amid 

competition from overseas companies. Improving the 

operational reliability of equipment is essential for this 

purpose. However, the risk of accidents is a concern for 

Japanese chemical plants owing to aging equipment and a 

decline in skilled maintenance personnel. Therefore, 

appropriate measures are required to maintain stable 

operation in plants. 

 IoT and AI technologies can now be used as substitutes for 

skilled workers. The introduction of AI in smart maintenance 

aims to construct ML models and improve their accuracy 

using proof-of-concept (PoC) activities. However, few such 

cases of AI implementation have been reported. One reason 

for this is the difficulty of developing highly accuracy ML 

models using PoC.  

In this context, this study utilized a human-in-the-loop 

(HITL) process during the implementation of the ML model. 

Thus, the challenge of constructing highly accurate ML 

models during the development phase is circumvented by 

developing an incomplete ML model and operating it with 

human support.  

The proposed model was implemented as an AI-based 

corrosion diagnosis system in a chemical company as a case 

study. To this end, the design concepts for implementing 
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HITL and the verification results of actual operations were 

also analyzed. 

2. METHODS 

2.1 UTILIZING HUMAN-IN-THE-LOOP MACHINE 

LEARNING  

In this study, we defined HITL as a loop involving human 

experts in the decision making of the ML model and operated 

the ML model while simultaneously improving it. Several 

existing studies have reported the successful application of 

ML-based approaches in cases with well-defined problems 

and abundant data. However, in production environments, 

these requirements are often not fulfilled. Therefore, further 

research is required to develop effective HITL methods for 

ML loops. However, we still adopted HITL, based on 

collaboration between human experts and AI, to compensate 

for the difficulty of developing highly accurate ML models 

during the PoC phase. Thus, if the ML model exhibited an 

accuracy of 60 % during development, human experts 

supported the remaining 40 % of cases during operation. 
Accuracy was measured in terms of the harmonic mean of 

Recall and Precision. Recall represents proportion of cases 

identified as positive by human experts that are also identified 

as positive samples by the ML model. Precision represents 

the proportion of the ML model's positive predictions that 

agree with those of human experts. 

2.2 DEFINING THE CONCEPT OF AN AI CORROSION 

DIAGNOSIS SYSTEM UTILIZING HUMAN-IN-THE-LOOP 

MACHINE LEARNING 

The conventional external corrosion inspection method for 

chemical plant piping at the Niigata Factory of Mitsubishi 

Gas Chemical Company, Inc., comprises the following steps. 

First, operators take photographs of the corroded pipes and 

paste them into an Excel file (Primary Inspection). Next, 

maintenance personnel (skilled workers) review the images 

and determine appropriate measures (Secondary Inspection). 

Preventing oversight during inspections is crucial for safety 

of the operators. Further, the number of captured images is 

usually very high, placing significant burden on maintenance 

personnel in the subsequent step. Thus, reducing the 

workloads of both operators and maintenance personnel is a 

major challenge. Moreover, inspection results are subjective, 

which have significant room for improvement. Figure 1 

illustrates the workflow of the conventional inspection 

method for corroded pipes. 

Two challenges were considered in this study, as depicted 

in Figure 1. Challenge 1 involved utilizing AI to reduce 

workload on humans and improve inspection quality and 

Challenge 2 involved designing a system to manage 

inspection information centrally. Instead of pasting the 

images into an Excel file, they were uploaded to a dedicated 

website for evaluation. Further, the need for a system that 

includes a search functionality and AI retraining data creation 

was identified. 

 
Figure 1: Existing workflow and challenges 

 

The desired state is depicted in Figure 2. 

 

 
Figure 2: The desired state  

 

The system image to be created, including the AI 

implementation and workflow efficiency, is depicted in 

Figure 3.  

 

 
Figure 3: Image of desired system 

 

A use-case diagram of the system of interest based on Figure 

3 is depicted in Figure 4. Figure 4 illustrates the 

functionalities of the proposed AI Corrosion Diagnosis 

System, including automatic detection of corrosion based on 

images, linking images to related information, and allowing 

the ML model to relearn based on the corrected results. 
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Figure 4: Use-case diagram of the system of interest 

 

To achieve the aforementioned functionalities, the AI 

Corrosion Diagnosis System comprised two subsystems by 

design—the AI subsystem and the Master subsystem 

(depicted in Figure 5). 

 

 
Figure 5: Constituents of the AI Corrosion Diagnosis 

System 

 

Based on Figures 4 and 5, we constructed a business 

flowchart to guide the interaction between humans and the 

system of interest, as depicted in Figure 6. This incorporates 

the HITL architecture during operation of the ML model. 

 

 
Figure 6: Overview of the proposed system  

 

First, the operator transmitted the images and information to 

the Master subsystem, where the data were stored. The 

images were then transmitted to the AI subsystem for 

automatic corrosion detection. The prediction results were 

verified by maintenance personnel via the Master subsystem 

and corrected if required. The corrected data were transmitted 

to the AI subsystem via the Master subsystem. The AI 

subsystem re-trained the prediction model based on these 

corrections. Thus, inspection quality was improved by 

incorporating the evaluations of maintenance personnel into 

the ML model via the Master subsystem. Based on the 

architecture depicted in Figure 6, we designed, developed, 

and implemented an AI-based corrosion diagnosis system. 

2.3. POINTS OF INGENUITY IN SYSTEM DEVELOPMENT 

2.3.1. Standardization during the Creation of Learning 

Data 

Standardization of evaluation by multiple skilled workers 

was necessary to create learning data for the ML model. 

Eleven skilled workers were involved in the following 

activities over three months: 

1. They were interviewed to verbalize their judgment 

methods. 

2. Differences between the judgment criteria of different 

skilled workers were identified. 

3. The verbalized information was recorded in a manual. 

These activities clarified the criteria and processes for 

manual decision making, enabling corrosion location and 

corrosion severity of the piping to be presented as learning 

data for the ML model. Corrosion severity was categorized 

into five stages in ascending order of severity—paint peeling, 

rusty appearance, mild corrosion, corrosion, and severe 

corrosion. However, the perceptions of the skilled workers 

were not completely identical. An operation based on human-

AI collaboration was necessary to account for this variation 

in training data. 

2.3.2. Utilization of Human-in-the-Loop Machine 

Learning  

We developed a system based on the concept of human-AI 

collaboration, comprising an incomplete ML model in the 

developmental phase supported by human experts in the 

operational phase. To implement the workflow depicted in 

Figure 6, the Master subsystem, which manages image 

information, was required to be linked to the AI subsystem, 

which performs image diagnostics. Moreover, relearning data 

had to be created using the Master subsystem to retrain the 

ML model. This ensured that the prediction accuracy of the 

ML model would improve over time with the progressive 

accumulation of retraining data. The aim of the proposed AI-

based corrosion diagnostic system was to contribute to the 

improvement of safety management in plants. 

3. RESULTS AND DISCUSSION 

3.1. Verification of Results obtained during Operation  

An AI-based corrosion diagnostic system was developed for 

carbon steel and stainless-steel piping without insulation. 

Figure 7 depicts the AI-identified corrosion location and 

progression in corrosion severity based on images of pipes. 

Table 1 summarizes the development of carbon steel and 

stainless steel piping. 3,800 annotation data were required for 

carbon steel piping development. 
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For stainless steel piping, the proposed ML model exhibited 

a prediction accuracy of 74 % based on 500 training data 

points, leveraging the development experience of carbon 

steel piping. The Master subsystem focused on improvements 

during operation, such as quick manual access to information, 

efficient image storage, and efficient creation of relearning 

data. 

 

 
Figure 7: AI-identified corrosion sites and progression in 

corrosion severity based on images of pipes. 

 

Table 1: Development Summary for Carbon steel piping and 

stainless steel piping 

 
 

Table 2 lists the effects of the proposed AI-based corrosion 

diagnostic system. 

 

Table 2: Effects of the AI-based Corrosion Diagnostic 

System (Initial Implementation) 

 
 

The introduction of the proposed AI-based corrosion 

diagnostic system reduced the workloads of the operators and 

maintenance personnel by 67 % and 30 %, respectively, 

resulting in an overall workload reduction of approximately 

50 %. The following conclusions were drawn based on 

interviews with actual operators and maintenance personnel: 

• Even with an AI accuracy of only 69 %, skilled 

workers could fully utilize the system without any 

concerns. 

• Image input time for operators was reduced from 3 

minutes to 1 minute (67 % reduction). 

• Comparison between AI-based judgment and 

human expectations of corrosion severity was a 

learning experience. 

• Learning from AI-based corrosion diagnostic 

systems may improve the accuracy of manual image 

detection by maintenance personnel. 

• Owing to the high interest in AI judgment among 

both maintenance personnel and operators, human-

AI collaboration is expected to advance 

significantly in the future, thereby further improving 

safety measures. 

• In future works, we intend to improve the accuracy 

of the proposed system by retraining the ML model 

based on re-annotation results using actual data, 

such as pipe thickness measurements. 

• The accumulated data can eventually be used for 

corrosion trend analysis and prediction in plants. 

• Future data accumulation is expected to be 

beneficial in several ways. 

These opinions were shared by the interviewed operators and 

maintenance personnel. 

 

3.2. Insights obtained from Human-AI Collaboration 

3.2.1. Insights on Relearning 

The proposed system was developed based on 3,800 pieces 

of training data that were carefully reviewed by skilled 

workers (maintenance personnel). Relearning during 

operation involved relearning 110 pieces of incorrectly 

predicted data by the AI. However, the prediction accuracy 

of the ML model remained almost constant even after 

relearning. This may be attributed to the small volume of 

relearning data compared to the original training data. To 

investigate this issue, we evaluated the relationship between 

the number of training images and accuracy of the ML model. 

An accuracy of 60 % was observed when 1,000 training 

images were used. This accuracy increased as the number of 

training data points increased up to 1,500, after which the 

accuracy improvement stagnated. Thus, in this case, as the M 

model was trained using 3,800 images, relearning was not 

expected to be effective unless a large amount of relearning 

data was collected. Because of the involvement of human 

experts in the creation of retraining data, the AI accuracy is 

not expected to reach 100 %. 

  

3.2.2 Limitations of the proposed system 
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New challenges emerged when the ML model put into 

operation. For instance, its accuracy did not improve during 

relearning owing to the difference in image quality between 

the developmental and operational phases—ideal corrosion 

images obtained from skilled maintenance personnel during 

development and real corrosion images obtained from 

operators during operation were of different qualities. During 

surgery, images with blurred and hard-to-identify target 

piping were included. These differences in image quality 

were attributed to noise. In future works, photography 

methods will need to be improved. Moreover, during the 

operation of the ML model on stainless steel pipes, corrosion 

severities different from the 4 levels defined during 

development were observed. We are currently considering 

adding a new model to the existing AI-based method to 

address these shortcomings.  

 

3.2.3 Insights on the Roles of AI and Humans  

It was suggested that the discrepancy between manual 

evaluation and AI-based diagnostic results was induced by 

differences in the diagnosis of delamination—paint 

delamination or thickness-reduction delamination. Human 

experts are capable of distinguishing between the two based 

on images. However, the proposed AI-based method failed to 

do so. In the implementation described in this study, AI-

detected delamination cases were checked by human experts 

to determine their types. In future works, development of AI 

models capable of distinguishing between different 

delamination types is expected to contribute to further 

improvements in accuracy. 

 

4. CONCLUSIONS 

In this study, we developed an AI-based corrosion 

diagnostic system that utilizes HITL ML for external 

inspection of corroded pipes in chemical plants. The model 

was trained based on the expertise of skilled workers and 

reduced the workload on human operators by approximately 

50 % with a prediction accuracy of 70 %. An operational 

version of the AI system was constructed and implemented 

in a real-world factory. The benefits of HITL, which was used 

to improve the accuracy of the ML model over time, are not 

yet clear; however, we plan to improve the HITL model and 

enhance its effects in the future. 

The collaboration between humans and AI provided 

valuable insights into operational safety. Enhancing the 

proposed AI-based corrosion diagnostic system through 

collaboration between humans and AI, addressing specific 

issues, and incorporating human experience into operations 

is essential. By examining AI diagnostics and safety 

operations in practice, we demonstrated the importance of 

collaboration between humans and AI based on actual 

operations and the new value that it creates. In future works, 

we intend to consider AI diagnostics using video recording in 

high-altitude locations. We plan to expand this approach to 

include insulated piping. 
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