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ABSTRACT 

In recent years, artificial intelligence (AI) has made highly 

accurate demand forecasting possible. However, improving 

forecast accuracy does not necessarily mean reducing 

inventory costs or improving service levels in supply chain 

and inventory management, which are closely related to 

demand forecasting. Workers require not only high 

accuracy but also a basis for making decisions a based on 

forecasts. Autoregressive integrated moving average 

(ARIMA) and seasonal autoregressive integrated moving 

average (SARIMA) are demand forecasting methods with 

high accuracy and interpretability. However, these methods 

cannot provide evidence for demand fluctuations such as 

trends and seasonality, although they exhibit an 

autoregressive time-series structure. In this study, a 

framework for demand forecasting with high accuracy and 

interpretability was designed using time series 

decomposition and ARIMA to support decision makers in 

demand forecasting. The Seasonal-trend decomposition 

using locally estimated scatterplot smoothing (STL) is used 

to decompose a time series into three components trend, 

seasonality, and residual to provide decision makers with an 

easily understandable basis for demand changes. In addition, 

the ARIMA model is used for trends and residuals to 

achieve highly accurate forecasts. Comparing the prediction 

accuracies of the proposed STL-ARIMA and SARIMA 

models shows that STL-ARIMA has higher interpretability 

than the SARIMA model and the same accuracy. 

1. INTRODUCTION 

Demand forecasting is used for decision making in various 

fields, and it is important to achieve high accuracy (Böse, 

Flunkert, Gasthaus, Januschowski, Lange, Salinas, Schelter, 

Seeger, & Wang, 2017). AI-based demand forecasting is 

gaining attention as a highly accurate demand forecasting 

method (Calster, Baesens & Lemahieu, 2017). However, 

workers are concerned about the practicality of these 

methods, paying attention to the tradeoffs between, for 

example, inventory costs and the level of service achieved 

(Babai, Ali, Boylan & Syntetos, 2013). In inventory 

management and supply chain decisions that are closely 

related to demand forecasting, decision makers must be 

satisfied with the results and be able to judge their validity. 
It is difficult for decision makers to use forecast results in 

their decision making if they do not understand why the 

forecast results were obtained (Nezu & Motohashi, 2016). 

The higher the degree of interpretability, (that is, the degree 

to which humans can understand the basis of judgments 

made by machines), the easier it is for decision makers to 

understand the basis for specific predictions, and more 

proactive decision making becomes possible. Thus, for 

demand forecasting in a business environment, it is 

important to achieve highly interpretable forecasts in 

addition to accuracy (Wu, Wang, Tao & Zeng, 2023; Hirose, 

2021). 

The decomposition process is fundamental to studying and 

exploring time series data (Kamath & Li, 2021). After 

decomposing time series data into trend, seasonality, and 

residuals, some researchers have performed forecasting 
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using deep-learning models and other highly accurate 

methods and then recombined the three components for 

forecasting (Xiong, Li & Bao, 2018; Li, Bao, Gong, Shu & 

Zhang, 2020). It is possible to decompose a time series into 

its individual components, as in these studies, to learn the 

characteristics of the three components and deepen the 

understanding of time series data. Therefore, the 

interpretability of the time series can be improved by 

making each component of the time series easier to 

understand (Rajapaksha, Bergmeir & Hyndman, 2021). 

However, highly accurate methods, such as deep learning 

models, are essentially “black boxes” in terms of changes in 

time series data because models cannot be represented in 

relational formulas (Caruana, Lou, Gehrke, Koch, Sturm & 

Elhadad, 2015; Moraffah, Karami, Guo, Raglin & Liu, 

2020). In contrast, the ARIMA and SARIMA models are 

classical time series forecasting models that have been used 

for many years in demand forecasting in business 

environments (Xu, Chan, & Zhang, 2019; Lorente-Leyva. 

Alemany, Peluffo-Ordóñez & Herrera- Granda, 2020). 

These models are represented by relational expressions, that 

reflect the time-series structure and clarify the basis of the 

forecasts. However, the effects of trend, seasonality, and 

residuals on the forecast cannot be determined from the 

relational equation. In this study, interpretability was 

evaluated from the following two perspectives. 

1. The model is expressed in terms of a relational equation. 

2. The effect of each of the three components (trend, 

seasonality, and residuals) on the forecast results is known. 

In addition, an attempt was made to design a framework for 

demand forecasting that is both accurate and interpretable 

from these perspectives.  This makes it possible to make 

predictions acceptable to workers in terms of inventory 

management and supply chain.  For example, in supply 

chain information sharing, orders from downstream to 

upstream that follow the demand process of ARIMA (0,1,1) 

may arise from information at various downstream stages, 

including the demand process ARIMA (0,1,1) (Babai et al. 

2013). The downstream demand process ARIMA (0, 1, 1) 

and other downstream information can be used as a 

reference when making upstream demand forecasts. Thus, 

the calculation of relational expressions by ARIMA plays 

an important role in information sharing in the supply chain. 

2. LITERATURE REVIEW 

Classical time series forecasting models have long been 

used in demand forecasting in the business environment 

(Calster et al. 2017). In particular, the ARIMA model is 

highly accurate and can reflect the time series structure by 

expressing the model as a relational equation. Hence, 

decision makers can convincingly use the results of this 

model, which is often employed in business environments 

(Lorente-Leyva et al. 2020). The SARIMA model adds 

seasonality to the ARIMA model (Xu et al. 2019). The 

accuracy of this model is improved by accommodating 

seasonality (Hamzaçebi, 2008). These classical models 

satisfy Perspective 1 (the model can be expressed in a 

relational form) but not Perspective 2 (the effects of each 

component on the predicted results can be known). 

Time series decomposition is usually performed to satisfy 

Perspective 2 (Rajapaksha et al. 2021). Time series 

decomposition is often performed to learn about component 

characteristics and gain a better understanding of time 

series data, but it can also be used to improve forecast 

accuracy (Hyndman & Athanasopoulos, 2018). 

Decomposition methods include classical (Pickering, 

Hossain, French, & Abramson, 2018), X11(Shiskin, Young, 

& Musgrave, 1967), seasonal extraction in ARIMA time 

series (SEATS), and STL (Cleveland, Cleveland, McRae & 

Terpenning, 1990). In particular, STL decomposition has 

several important advantages over other methods (Li et al. 

2020; Patidar, Jenkins, Peacock & McCallum, 2019). For 

example, it is highly tolerant of time series outliers and can 

yield robust subsequences. It can also accommodate all 

types of seasonality. Xiong et al. (2018) used STL 

decomposition to decompose a time series. They then used 

a naïve forecasting method for seasonality, using 

predictions made 12 periods in advance, and a neural 

network called extreme learning machine (ELM) for trends 

and residuals. Here, the time series is divided into three 

components trend, seasonality, and residuals, and the effect 

of each component on the forecast results can be seen. 

However, because neural networks are used to predict 

trends and residuals, the model is not expressed as a 

relational equation and is interpreted for changes in 

elements. 

In this study, time series decomposition was performed 

using STL decomposition to observe the effects of trend, 

seasonality, and residuals. Furthermore, a forecasting 

method, STL-ARIMA, is proposed that has sufficient 

accuracy and interpretability as a demand forecasting 

method for business environments by expressing the change 

in each component in terms of the relational equation of the 

ARIMA model. 

3. METHODOLOGY 

In this study, STL-ARIMA, which satisfies Perspectives 1 

and 2, was designed. STL-ARIMA can represent the model 

equation by elements, which improves not only accuracy 

but also interpretability. The STL-ARIMA procedure is as 

follows. 

Step 1: The time series data are decomposed into trend, 

seasonality, and residuals using STL decomposition. 

Step 2: Seasonality is predicted with a naive forecasting 

method, and trend and residuals with an ARIMA model. 

Step 3: The three components (trend, seasonality, and 

residuals) are merged. 
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3.1. Step 1: Time Series Decomposition 

STL decomposition is a filtering method that decomposes a 

time series into additive components (Li et al. 2020). Time 

series data 𝑋𝑡 can be decomposed into trend Tt, seasonality 

St, and residual Rt. 

𝑋𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡    (1) 

This is an iterative method consisting of an inner and an 

outer loop. In the inner loop, seasonal smoothing is used to 

update the seasonal component, and trend smoothing is 

used to update the trend component. If it is assumed that 

𝑆𝑡
(𝑘)

 and 𝑇𝑡
(𝑘)

 are the seasonal and trend components, 

respectively, at the end of the kth pass, then the update for 

the (k + 1)th step is computed as follows. 

1. Detrending. The detrended series is obtained by 

subtracting the original series from the estimated trend 

series 𝑇𝑡
(𝑘)

: 𝑋𝑡
(𝑡𝑟𝑒𝑛𝑑)

= 𝑋𝑡 − 𝑇𝑡
(𝑘)

. 

2. Seasonal smoothing. Each subcycle series of the 

detrended series is smoothed with a locally estimated 

scatterplot smoothing (LOESS) smoother to obtain the 

preliminary seasonal component 𝐶𝑡
(𝑘+1)

. 

3. Low-pass filtering of the smoothed seasonal 

components. The 𝐶𝑡
(𝑘+1)

 obtained in Step 2 is low-pass 

filtered and further LOESS-smoothed to identify the 

remaining trend 𝐿𝑡
(𝑘+1)

. 

4. Smoothed seasonal detrending. The seasonal 

component 𝑆𝑡
(𝑘+1)

 from the (k + 1)th step is obtained 

by subtracting the preliminary seasonal series from the 

low-pass value: 𝑆𝑡
(𝑘+1)

=  𝐶𝑡
(𝑘+1)

− 𝐿𝑡
(𝑘+1)

 

5. Deseasonalizing. The seasonal component 𝑆𝑡
(𝑘+1)

 is 

subtracted from the original series Xt to obtain the 

seasonally adjusted series 𝑋𝑡
𝑑𝑒𝑠𝑒𝑎𝑠𝑜𝑛: 𝑋𝑡

𝑑𝑒𝑠𝑒𝑎𝑠𝑜𝑛 = 𝑋𝑡 − 

𝑆𝑡
(𝑘+1)

. 

6. Trend smoothing. The non-seasonal series 𝑋𝑡
𝑑𝑒𝑠𝑒𝑎𝑠𝑜𝑛 

obtained in Step 5 is smoothed by a LOESS smoother 

to obtain the trend component 𝑇𝑡
(𝑘+1)

. 

In the outer loop, the remaining component 𝑅𝑡 is calculated 

using the trend and seasonal components obtained in the 

inner loop: 𝑅𝑡
(𝑘+1)

= 𝑋𝑡 − 𝑇𝑡
(𝑘+1)

− 𝑆𝑡
(𝑘+1)

 

Time series decomposition enables one to measure the 

strength of trends and seasonality in time series data (Wang 

& Hyndman, 2006). The trend and seasonality strengths 𝐹𝑇 

and 𝐹𝑆 are defined as 

𝐹𝑇 = max [0,1 −
𝑉𝑎𝑟(𝑅𝑡)

𝑉𝑎𝑟(𝑇𝑡 + 𝑅𝑡)
] (2) 

𝐹𝑆 = max [0,1 −
𝑉𝑎𝑟(𝑅𝑡)

𝑉𝑎𝑟(𝑆𝑡 + 𝑅𝑡)
] (3) 

The strengths of the trend and seasonality can be expressed 

between 0 and 1 the higher the number, the stronger they 

are. 

3.2. Step 2: Prediction of Each Component 

The trends, seasonality, and residuals are forecast. Trends 

and residuals represent changes in time series data in a 

relational equation by forecasting using the ARIMA model. 

This satisfies Perspective 1 and facilitates interpretation. 

The Akaike information criterion is used to select the order 

and coefficients of the ARIMA model. For seasonality, a 

naïve forecasting method is used that takes the forecast 

value as it was 12 periods ago. This is because STL 

decomposition repeats the values for the number of years in 

the training period without changing the values for the 12 

periods. 

The ARIMA model combines autoregressive, integrated, 

and moving average models (Sharma & Mishra, 2023). If 

the observations at discrete times 1, 2, ⋯, n are y1, y2, ⋯, yn, 

B is the lag operator, 𝜑𝑝(𝐵) is an autoregressive operator, 

and 𝜃𝑞(𝐵)  is a moving average operator, then  𝑎𝑡  is 

Gaussian white noise with zero mean and constant variance. 

The ARIMA(p, d, q) model is as 

𝜑𝑝(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜃𝑞(𝐵)𝑎𝑡 (4) 

𝐵𝑦𝑡 = 𝑦𝑡−1 (5) 

𝜑𝑝(𝐵) = 1 − 𝜑1𝐵 − ⋯ − 𝜑𝑝𝐵𝑝 (6) 

𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞 (7) 

3.3. Step 3: Merge the Components 

The predicted values of trends, seasonality, and residuals 

are added together to form the predicted values of the time 

series data. 

4. RESULTS AND DISCUSSION 

4.1. Data Description 

The data used were open data obtained from the Global 

Economic Data, Indicators, Charts & Forecasts. Twenty 

Japanese monthly datasets for automobiles, inflation, 

energy, electronics, business/economy, investment, etc. 

were used. The data period covers eight years, or 96 months, 

from April 2012 to March 2019. Table 1 summarizes the 

data. 

 

 

 

 

 



Asia Pacific Conference of the Prognostics and Health Management Society 2023 

4 

 

4.2. Results and Verification 

Predictions were made for three test periods: three, six, and 

twelve months. Table 2 shows the results for the three 

month test period. STL-ARIMA was validated by 

comparing these results with the prediction results from the 

SARIMA model. SARIMA is a highly accurate model that 

maps seasonality to ARIMA (Hamzaçebi, 2008). The root 

mean square error (RMSE) values were compared and 

evaluated. When yi is the measured value, 𝑦�̂�  is the 

predicted value, and n is the total number of data points, the 

RMSE is expressed as 

RMSE = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 (8) 

When the test period was three months, STL-ARIMA 

outperformed the SARIMA model for 10 data points (see 

Table 2). The STL-ARIMA model was more accurate than 

the SARIMA model for eight data sets when six months 

were used and for seven data sets when twelve months were 

used. Specifically, STL-ARIMA is as accurate as SARIMA 

when data from a variety of fields are used for forecasting. 

In addition, it is better suited to short-term forecasts than to 

long-term forecasts. Regarding interpretability, Perspective 

1 is achieved because both methods enable the model to be 

represented by a relational equation. The SARIMA model 

does not achieve Perspective 2. The STL-ARIMA model 

achieves Perspective 2 because it uses time series 

decomposition to indicate the strength of the trend and 

seasonality, and forecasts are made for each of the 

components. STL-ARIMA satisfies these two 

interpretability aspects and is more interpretable than 

SARIMA. 

 

4.3. Considerations 

STL-ARIMA and SARIMA were compared, and which 

features make them suitable for which types of data was 

investigated. The strengths of trend FT and seasonality FS 

for each dataset were divided into five intervals, each with a 

range of 0.2. Figure 1 shows the strength of the trend in the 

time series and the number of superior predictions for STL-

ARIMA and SARIMA. Figure 2 shows a similar result for 

seasonality. The vertical axes in Figures 1 and 2 show the 

number of data for the method with the smallest error 

comparing STL-ARIMA and SARIMA for each of the data 

in Table 2. For example, Figure 1 shows that STL-ARIMA 

has better accuracy than SARIMA and that there are three 

data sets with a trend of 0.2-0.4. Figure 3 shows the 

relationship between the trend and the strength of 

seasonality for each dataset. This shows that STL-ARIMA 

is better suited for data with weak trends and strong 

seasonality than the SARIMA model. However, SARIMA 

performed better for data with a strong trend. 

Table 2. RMSEs of STL-ARIMA and SARIMA. 

 STL-

ARIMA 
SARIMA  

STL-

ARIMA 
SARIMA 

A 2.68.E+04 3.74.E+04 K 3.00.E+00 1.76.E+00 

B 1.59.E-01 2.51.E-02 L 3.61.E+03 2.98.E+03 

C 3.32.E+02 5.69.E+02 M 2.39.E+00 3.01.E+00 

D 2.11.E+01 1.66.E+01 N 1.09.E+06 1.43.E+06 

E 5.50.E+01 1.49.E+02 O 1.54.E+01 4.66.E+00 

F 3.91.E+01 1.55.E+01 P 1.79.E+00 2.29.E+00 

G 5.48.E+00 1.61.E+00 Q 2.24.E+00 4.43.E+00 

H 2.90.E+03 1.71.E+03 R 5.57.E+03 1.76.E+04 

I 4.83.E+02 5.28.E+02 S 3.34.E+04 2.95.E+04 

J 6.20.E-01 6.23.E-02 T 7.54.E+03 7.93.E+03 

 

Table 1: Data items. 

 Data 

A Motor Vehicle Production 

B OECD Business Climate Index Survey Manufacturing 

C Building Construction Started 

D Population 

E Production Volume Digital Still Camera 

F Production Coke 

G JP Index Share Price 

H JP Exports fob 

I Treasury Acc Balance Private Sector General Acc GA 

J Consumer Price Index 

K 
JP Official Rate End of Period National Currency per 

SDR 

L Portfolio Investment Assets PIA Total 

M Iron Steel Inventory Rate JISF Ordinary Steel 

N 
JP Other Depository Corporations MFSM 2000 

Foreign Assets Net 

O Retail Price Tokyo Food Tune Fish 

P Industrial Production Index IPI Mining Manufacturing 

Q Production Shipment Index PSI Mining Manufacturing 

R 
Billing Semiconductor Manufacturing Equipment 

3 Month Average 

S Visitor Arrivals Total 

T Vehicle registrations OECD countries 
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Figure 1. Trend strength and suitable methods. 

 
Figure 2. Seasonality strength and suitable methods. 

Figure 3. Relationship between trend and seasonality 

strength 

5. CONCLUSION 

A framework for demand forecasting was designed that is 

both accurate and interpretable enough to be used as a 

demand forecast for business environments. First, time 

series decomposition was performed using STL 

decomposition to read the effects of trend, seasonality, and 

residuals in the time series. STL-ARIMA, a forecasting 

method with accuracy and interpretability, was developed 

by expressing the changes in the components in terms of the 

ARIMA model relationship. STL-ARIMA satisfied the two 

interpretability perspectives and, thus, had better 

interpretability than SARIMA, but with comparable 

accuracy. The data for which STL-ARIMA was suitable 

were those with strong seasonality. In contrast, it was not 

suitable for data with a strong trend. Planned future work 

includes testing the accuracy of the time series 

decomposition method and the component-by-component 

prediction method when they are replaced by other highly 

interpretable methods. 
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