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ABSTRACT 

In recent years, a growing role in digital technologies has 
been filled by model-based digital twinning. A digital twin 
produces a mapping of a physical structure, operating in the 
digital domain. Combined with sensor technology and 
analytics, a digital twin can provide enhanced monitoring, 
diagnostic, and optimization capabilities. This research 
harnesses the significant capabilities of digital twining for the 
unmitigated challenge of fault type classification of a 
locomotive braking system solenoid valve. We develop a 
digital twin of the solenoid valve and suggest a method for 
fault type classification based on the digital twin. The 
diagnostic ability of the approach is demonstrated on a large 
experimental dataset. 

1. INTRODUCTION  

Solenoid valves are widely used in industry because of their 
simple operating mechanism (Fan et al., 2019; J. Y. Oh et al., 
2012; Yoon et al., 2013). However, malfunctioning valves 
can cause serious injury and/or financial damage. Predictive 
maintenance strategies have been developed to mitigate 
unexpected failures (Escobar et al., 2011; Kwon et al., 2016; 
H. Oh et al., 2015; Park et al., 2016; Wang et al., 2018).  
Existing failure detection methods often use vibration 
signals. For example, Tsai et al (Tsai & Tseng, 2010) develop 
a dynamic model-based method for detecting damage to 
valve stems and valve seats for electronic diesel injection 
systems, while Guo et al (H. Guo et al., 2017) propose a data-
driven method for detecting magnet wear in brake systems. 
Although vibration signal-based methods have high detection 
sensitivity, they require the installation of invasive sensors in 
the target valves, which can be a practical burden. Non-
invasive current signal based fault detection methods are 

advantageous in this regard (B.Orner et al., n.d.; W. Guo et 
al., 2018). However, these models have not produced robust 
fault type classification algorithms due to significant 
differences between simulated data and real data measured 
under actual operating conditions. To address this problem, 
this study proposes a   digital twin approach (DT) for 
classifying faults that occur in a solenoid valve of a 
locomotive braking system. Digital twins are virtual 
representations of physical systems. They are used to monitor 
systems, predict their behavior and optimize their 
performance (Chen et al., 2001; El Mejdoubi et al., 2016). 
Here, the proposed DT is based on a physical model of the 
brake system solenoid valve and is optimized using a 
machine learning approach. A learning model is trained to 
diagnose faults in the real twin (RT, i.e., the physical 
structure) based on the residual signal between the real life 
measured data of the RT and the estimated data of the DT. 
Implementing DTs is challenging because it is difficult to 
ensure that the DT accurately represents the system (Seo et 
al., n.d.). One a is to use machine learning algorithms to 
improve the accuracy of mathematical models using sensor 
data (Tsai & Tseng, 2010), which can compensate for the 
differences between simulation and reality and provide DT 
improvements.  

DTs are becoming increasingly popular in various industries 
such as manufacturing, transportation, energy, and healthcare 
(Angadi et al., 2009; Trappey et al., 2015) because they 
provide accurate and reliable predictions of a system's 
behavior and state, allowing for longer time intervals between 
maintenance routines (Kawashima et al., 2004). DTs can be 
particularly useful for optimizing the performance of 
complex systems such as those found in manufacturing and 
transportation (Kawashima et al., 2004; Luomala & Hakala, 
2015). 

The contribution of this study is twofold: (i) to develop a DT 
of a solenoid valve for locomotive braking systems and (ii) to 
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develop a robust diagnosis of various faults in a solenoid 
valve for locomotive braking systems by estimating the 
internal latent physical variables within a DT and training a 
learning model on the residuals. The study is divided into five 
sections. Section 2 provides a theoretical background and 
introduces the new DT, Section 3 presents the new algorithm 
based on DT, and Section 4 demonstrates the algorithm using 
experimental data. The study is summarized in Section 5. 

2. THEORETICAL BACKGROUND 

In the following sections, the solenoid valve of the 
locomotive braking system and the new DT of a locomotive 
solenoid valve are introduced. In Section 2.1 the solenoid and 
its role in the braking system are explained.  The development 
of the physical model underlying the behavior of the DT and 
the relationship between the measured data of the RT and the 
internal latent physical variables of the DT are described by 
the equations presented in Section 2.2.  

2.1. Solenoid Valve in the Braking System 

The locomotive of type JTBW42 and other train locomotives 
have a solenoid valve that plays a critical role in ensuring rail 
vehicle safety. This valve is an essential part of the braking 
system. When the pressure in the system drops below a 
certain threshold, it triggers the solenoid valve to apply the 
brakes as soon as a brake signal is received. The structure of 
the braking system is shown in Fig.1. The position of the 
solenoid valve between the relay valve and the pressure 
control valve is crucial for reliable emergency braking. 

 

Figure 1. Structure of the braking system in trains 
 
According to the statistics of the Israeli Railway maintenance 
department, the probability of solenoid valve failure on 
JTBW42 locomotives increases sharply when mileage 
exceeds 800,000 km. Many situations are responsible for 
solenoid valve failure, e.g. situations where the solenoid 
valve cannot be completely sealed due to corrosion inside the 
valves, loss of power or mechanical wear [1, 2]. 
 
As shown in Fig.2, the solenoid valve controls the operation 
of a moving iron core in a solenoid coil to open or close the 
exhaust valve by turning the solenoid coil on or off. Of 

course, the solenoid valve is a switch-like component that can 
easily fail due to wear. Therefore, it is important to accurately 
assess the condition of the solenoid valve. 
 

 
Figure 2. Structure of the solenoid valve 

2.2. DT of a Locomotive Solenoid Valve in the 
Braking System 

Fig.3 depicts a cylindrical ferromagnetic steel shell with a 
movable cylindrical steel piston inserted inside it. The piston 
is connected to a spring. A coil connected to a DC power 
source is positioned inside the casing. The coil, when excited, 
transforms electrical energy into magnetic field energy. This 
electromagnetic force moves the piston in the positive 𝒙-
coordinate direction and reduces the reluctance of the 
magnetic circuit, which increases the inductance. Once the 
piston reaches an operating point where the electromagnetic 
force equals the spring force, the system is in equilibrium. If 
an external mechanical force, 𝒇𝒐, is applied suddenly and the 
piston moves, the inductance decreases, and the mechanical 
energy of the spring transfers the magnetic energy of the 
applied coupling. When the electromagnetic force equals the 
restraining force, a new operating point is reached. Once the 
mechanical force 𝒇𝒐 drops to zero, the system returns to the 
starting point, and the mechanical energy of the spring 
transfers to the coupling field. However, part of the energy is 
dissipated during transients and due to friction losses in the 
circuit. 

Using Kirchhoff's Voltage Law (2nd low) and assuming 
magnetically linear system, the solenoid valve electrical 
subsystem is described as follows:  
 

 

𝑣 = 𝑅 ∙ 𝑖 +
𝑑𝛿

𝑑𝑡
; 

𝛿 = 𝐿(𝑥) ∙ 𝑖;  

𝑣 = 𝑅 ∙ 𝑖 + 𝐿(𝑥) ∙
𝑑𝑖

𝑑𝑡
+ 𝑖 ∙
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1
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∙
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(1) 
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where 𝑅 is the resistance, 𝑖 is the current, 𝑣 is the voltage, 𝑥 
is the piston displacement, 𝛿  is the flux linkage, 𝐿  is the 
inductance and 𝑡 is time. 
 
Using Newton’s second law the solenoid valve mechanical 
subsystem is described as follows:  
 

 

∑𝐹 = 𝑀 ∙ 𝑎 = 𝑀 ∙
𝑑𝑉

𝑑𝑡
= 𝑀 ∙

𝑑 𝑥

𝑑𝑡
 ; 

𝑓 − 𝑘 ∙ (𝑥 − 𝑥 ) − 𝐶 ∙
𝑑𝑥

𝑑𝑡
− 𝑓 = 𝑀 ∙

𝑑 𝑥

𝑑𝑡
;  

𝑑 𝑥

𝑑𝑡
=

1

𝑀
𝑓 − 𝐶 ∙

𝑑𝑥

𝑑𝑡
−  𝑘 ∙ (𝑥 − 𝑥 ) − 𝑓  

(2) 

where 𝑘  is the spring constant, 𝑥  is the initial piston 
displacement, 𝐶  is the damping coefficient, 𝑥  is the piston 
displacement, 𝑓  is a force acting on the piston, 𝑓  is the 
electromagnetic force and 𝑀 is mechanical parts mass.  
 
Knowing the reluctance of the system, the Inductance could 
be derived:  
 

 

𝑅 =
𝑔

𝜑 ∙ 𝜋 ∙ 𝑥 ∙ 𝑑

𝑎 + 𝑥

𝑥
; 

𝐿(𝑥) =
𝑁

𝑅
=

𝜑 ∙ 𝜋 ∙ 𝑥 ∙ 𝑑 ∙ 𝑁

𝑔
 

𝑥

𝑎 + 𝑥
 

𝐿 =
𝜑 ∙ 𝜋 ∙ 𝑥 ∙ 𝑑 ∙ 𝑁

𝑔
  → 𝐿(𝑥) = 𝐿 ∙

𝑥

𝑎 + 𝑥
 

(3) 

where 𝑅  is the reluctance of the system, 𝑑  is the piston 
diameter, 𝑎 is the cylindrical steel shell geometrical size (see 
Fig.3), 𝑔 is the gap between the piston and the cylindrical 
steel shell and 𝑁 is the windings around the coil. 
 
Knowing that the magnetic system is linear and that the 
current was kept constant during the change of the working 
point, the electromagnetic force can be derived as follows: 
 

 

𝑓 =
𝑑𝑊𝑓

𝑑𝑥
=

𝑖

2
∙

𝑑𝐿(𝑥)

𝑑𝑥
=

𝑖

2
∙

𝑎 ∙ 𝐿

(𝑎 + 𝑥)
 

𝑑𝐿(𝑥)

𝑑𝑥
=

𝑎 ∙ 𝐿

(𝑎 + 𝑥)
 

(4) 

Two parameters were routinely measured on the tested 
locomotives. They are presented in Fig. 4: the solenoid valve 
current, marked by 𝑖 , the solenoid valve displacement, 
marked by 𝑥 and the solenoid valve voltage 𝑈 . In the current 
study, the internal latent physical variables (𝑅, 𝑘 and 𝐿) are 
estimated by solving a least squares problem, where the 
variables minimize the constraints presented in Eq. 5. This is 
achieved in Eq. 6, also known as a least squares estimation:  

𝜃 , … , 𝜃 = 𝑎𝑟𝑔 min
,…,

𝜃 𝑥 [𝑛] − 𝑦[𝑛]  

(5) 

�⃗� = (𝑋 𝑋) 𝑋 𝑦 (6) 

where 𝑥 [𝑛]  represents the corresponding values of the 

internal parameters 𝜃  in the coordinate 𝑛  [e.g., for 𝜃  in 

time 𝑡, the corresponding value is 𝑈
∆

], 𝑦[𝑛] represents 

the measured parameters in the coordinate 𝑛  and 𝑋  is the 

matrix of 𝑥 [𝑛] with 𝑁 rows and 𝑗 − 𝑖 + 1 columns. 

The internal variables (𝜃 , 𝜃  and 𝜃 ) can be used to calculate 

the process coefficients presented in Eq. 7: 

𝑅 = 𝜃 , 𝐿 = 𝜃 , 𝑘 = 𝜃  (7) 

       

Figure 3. Schematic description of the solenoid structure 
 

 

Figure 4. Measured parameters; (a) 𝑼𝑨 (blue), (b) 𝒊𝑨 
(orange), (c)  𝒙 (yellow). 
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3. THE PROPOSED ALGORITHM  

The proposed algorithm is integrated in the locomotive DT. 
It consists of five steps, illustrated in Fig. 5. 

1. For each RT in the training set, an individualized DT 
is generated by estimating the internal variables 
(𝜃 , 𝜃  and 𝜃 ). These variables are estimated by the 
least squares method presented in Eq. 5, as explained 
in Section 2.2.   

2. Based on the internal estimated parameters, the DT 
calculates the residuals between the measured and 
estimated signals. 

3. From each residual, five features are extracted: mean, 
variance, maximal value, kurtosis, and absolute sum. 

4. A model of Deep Neural Network (DNN) is trained 
on the extracted features where, at first, the training 
set is divided into 80% training and 20% validation, 
and the number of trees is set to have maximal 
accuracy on the validation set. 

5. The trained model is used to predict the classes of the 
test set.    

  

Figure 5. The new suggested algorithm. 
 
We analyze the computational, time, and resource demands, 

especially with respect to large data sets, to provide a 

comprehensive understanding of the practical 

implementation of the algorithm. To improve the 

interpretability of the model, we also explore various 

methods such as layer-wise propagation of relevance, 

attention mechanisms, and sensitivity analysis. These 

additions aim to shed light on the decision-making process of 

the deep neural network ensemble and provide meaningful 

explanations for its predictions. By improving the 

interpretability of the model, we aim to address the black-box 

characteristics of deep neural networks and make provide 

transparency in the diagnostic process, which will promote 

the applicability of our approach in safety-critical train 

operations and maintenance activities. 

4. DEMONSTRATION ON AN EXPERIMENTAL 

DATASET  

In this section, the new algorithm described in Section 3 is 
tested and compared with other algorithms: 

A regular machine-learning algorithm consists of Steps 3, 4, 
and 5 of the new algorithm described in Section 3. This 
algorithm extracts the features directly from the measured 
signals, i.e., 𝑖  and 𝑈 , and a model of deep neural network is 
trained on these extracted features, as described in Step 4 in 
Section 3. This algorithm does not use the DT. 

The comparison process between the new algorithm and the 
regular machine-learning algorithm demonstrates the 
contribution of the DT concept. 

These two algorithms, i.e., the regular machine-learning 
algorithm, and the new suggested  algorithm, were tested on 
an experimental dataset consisting of a 5,500 RT training set 
and a 250 RT test set. An example of the two measurements 
of an RT in the training set is depicted in Fig. 4. Overall, five 
classes were tested, one healthy and four types of faults: 
damage coil, voltage sensor bias, current sensor bias, and 
damage spring Fig.6. The fault types were divided uniformly 
across different classes. 

 

  
 

 
Figure 6. Illustration of the damaged spring signal. 

 
The results of the two tested algorithms are presented in Fig. 
7 on 250 test examples, 50 from each condition. As can be 
seen in Fig. 7(a - c), the new algorithm achieved a significant 
improvement from accuracy of 68% to 87.1%. The error is 
reduced by more than a factor of 2. This result demonstrates 
the ability of the DT to improve diagnosis by incorporating 
physical knowledge of the system.  
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(a) 

 
(b) 

(c) 

Figure 7. Results of the new suggested algorithm. (a) 
The new suggested algorithm, (b) Regular machine-

learning algorithm without the DT, the summarized 
accuracies of (a–b).  Each table presents the confusion 

matrix after applying the tested algorithm on the test set 

5. CONCLUSION 

This paper presents a DT algorithm for diagnosing faults in 
solenoid valves of locomotive brakes. The algorithm involves 
five steps, including estimation of internal DT variables, 
computation of residuals, feature extraction, training of a 
deep neural network ensemble, and prediction. The dataset 
used for testing consists of 5,500 training RTs and 250 test 
RTs. The results show a significant improvement in accuracy 
from 68% to 87.1 % compared to traditional machine 
learning algorithms. The approach DT improves diagnosis by 
incorporating physical knowledge about the system. 

Unlike traditional fault detection methods, the method 
described is based on a physically derived solenoid valve 
model of the braking system, making it applicable to a wide 
range of operating points and easily transferable to other 
solenoid valves. In addition, the symptoms are easy to 
interpret and understand. 

This model-based approach DT has a broader impact than 
traditional engineering design, as it can improve train 
operations and maintenance activities by diagnosing and 
correcting maintenance faults. Ultimately, the greatest 
benefit of such DT is its impact on customer experience and 
operating costs. The paper shows how performance-based 
engineering, where real-time performance provides the input 
to an adaptive system packaged in a digital layer - the DT - 
can create significant value. 
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