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ABSTRACT

Recently, explainable AI (XAI) techniques have gained trac-
tion in the field of prognostics and health management (PHM)
to enhance the credibility and trustworthiness of data-driven
nonlinear models. Post-hoc model explanations have been
popularized via algorithms such as SHapley Additive exPla-
nations (SHAP), but remain impractical for real-time prog-
nostics applications due to the curse of dimensionality. As an
alternative to deterministic approaches, stochastically sam-
pled Shapley-based approximations have computational ben-
efits for explaining model predictions. This paper will intro-
duce and examine a new concept of explanation uncertainty
through the lens of uncertainty quantification of stochastic
Shapley attribution estimates. The proposed algorithm for
estimating Shapley explanation uncertainty is efficiently ap-
plied for the 2021 PHM Data Challenge problem. The un-
certainty in the derived explanation for a single prediction is
also illustrated through personalized prediction recipe plots,
improving post-hoc model visualization. Finally, important
practical considerations for the implementation of Shapley-
based XAI for industrial prognostics are provided.

1. INTRODUCTION

Prognostics and health management (PHM) research has
made significant strides over the last decade due to monu-
mental improvements in data collection, storage, and com-
putational capabilities. As elaborated by Lee et al. (2018),
these advancements have helped popularize the usage of
data-driven and nonlinear Industrial AI techniques for cyber-
physical systems (CPS), leading to tangible improvements
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on key performance indicators such as yield (Senoner et al.,
2022), throughput (Lai et al., 2021), sustainability (Bai et al.,
2020), and reliability and safety (Xu & Saleh, 2021).

In prognostics applications, machine learning (ML) has been
used both for classification (e.g., predicting incipient faults
or anomalies) and regression tasks (e.g., estimating the re-
maining useful life (RUL) to assess the current state of degra-
dation). In particular, deep learning models have demon-
strated great success in capturing complex feature represen-
tations and handling large, high-dimensional datasets. How-
ever, they are typically presented as black-box models and
lack interpretability, therefore inhibiting trustworthiness and
acceptance in practice (Molnar, 2022). Motivated by regu-
latory, scientific, and industrial needs (Ahmed et al., 2022),
explainable AI (XAI) techniques have garnered attention to
address these shortcomings. This paper will focus on model-
agnostic XAI motivated by Shapley analysis from coopera-
tive game theory (Shapley, 1953), which allows for enhanced
model interpretations regardless of the specific ML architec-
ture employed to generate predictions.

Originating from game theory, Shapley explanations aim
to assign the “fairest” payoff to participants in cooperative
games across all possible coalitions of players (Shapley,
1953). Recently, this concept has been extended towards ex-
plaining ML predictions, typically in terms of the marginal
contributions of input features (Lundberg & Lee, 2017).
Computing the exact Shapley contributions is generally in-
tractable, as the calculation scales exponentially on the num-
ber of features. As a result, a variety of approximation
techniques have been developed, such as the deterministic
SHapley Additive exPlanations (SHAP) values (Lundberg
& Lee, 2017), often used in tandem with the Local Inter-
pretable Model-Agnostic Explanations (LIME) method to ex-
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plain individual predictions (Molnar, 2022). A comprehen-
sive review of Shapley estimation algorithms can be found
in (H. Chen et al., 2022).

Shapley estimation algorithms vary by model specificity,
approach to removing features, and estimation strategies
(H. Chen et al., 2022). For example, the L-Shapley
(J. Chen et al., 2018), KernelSHAP (Covert & Lee, 2021),
and Interactions-based Method for Explanations (IME)
(Strumbelj & Kononenko, 2010) all compute marginal Shap-
ley values approximations but are based on semivalue, least
squares, and random order value estimations, respectively.
The major limitation behind existing techniques is that their
computational expense is prohibitive for applications that re-
quire analysis on a near real-time basis, such as predict-and-
prevent prognostics paradigms.

Complex engineering systems require timely decisions when
operating under degradation and uncertainty. While ML mod-
els can help streamline decision-making, operators may find
opaque models unreliable and untrustworthy when dynamic
conditions bring unexpected distributional drift from behav-
ior represented in training sets. Therefore, obtaining fast ex-
planations, together with the uncertainty in these explana-
tions, can illuminate the tendencies of operational models and
help decision-makers gauge the trustworthiness of the gener-
ated prognoses during operation.

While variants of SHAP have been used to obtain model ex-
planations in industrial data, these use cases have largely been
relegated to obtaining post-hoc explanations offline. For ex-
ample, Senoner et al. (2022) identified quality drivers to rec-
ommend process improvements in semiconductor manufac-
turing, and Park et al. (2022) utilized SHAP in conjunction
with other XAI approaches to improve the explainability of
offline fault diagnosis for nuclear plants. Thus, there remains
a clear need to develop methods that can swiftly obtain reli-
able model explanations with associated uncertainties.

This paper will introduce a new concept of explanation un-
certainty, in which the user is able to quantify the uncertainty
of a prediction’s explanation based on the variance of stochas-
tically estimated additive Shapley effects. The key contribu-
tions of this paper are summarized as follows:

1. Development of an algorithm to efficiently estimate
Shapley-based explanation uncertainty based on the IME
formulation of computing marginal Shapley values;

2. Validation using the 2021 PHM Data Challenge
aerospace prognostics benchmark problem to identify
key features contributing to turbofan engine failure with
respect to RUL predictions; and

3. Novel visualization of Shapley-based XAI in the form of
“personalized prediction recipe” plots to further enhance
interpretability of predictions.

In the remainder of this paper, Section 2 will introduce the

proposed algorithmic approach towards approximating ex-
planation uncertainty, Section 3 will present a prognostics
case study to demonstrate the feasibility and usefulness of
the method, and Section 4 will provide concluding remarks.

2. METHODOLOGY

We define explanation uncertainty to be a quantity that rep-
resents the confidence to which the user can explain or de-
compose a model prediction using its inputs. Generally, ex-
planation uncertainty is a nonlinear function of the model in-
put, predictive model, explanation method, and respective un-
certainties associated with these elements. This paper, how-
ever, directs attention to a simplified explanation uncertainty
concept solely derived from a chosen explanation method:
stochastic Shapley value approximations via the IME algo-
rithm (Štrumbelj & Kononenko, 2014).

Consider an input x ∈ Rm where we want to provide an ex-
planation to its model prediction f(x)—let us call this tar-
geted x the explicand. This x is associated with a Shapley
explanation vector ϕ(x) =

[
ϕ0 ϕ1(x) . . . ϕm(x)

]T
,

where ϕ0 represents the baseline explanation that is constant
across all x, and ϕi(x) for i = 1, 2, . . . ,m are the marginal
contributions corresponding to the ith feature. The basic prop-
erty of local accuracy from Shapley theory then asserts

f(x) = ϕ0 +

m∑
i=1

ϕi(x) (1)

where f is the original predictive model under the explanation
analysis.

Originating from game theory, Shapley values are defined as
the weighted average of the marginal contributions of players
across all possible coalitions (Lundberg & Lee, 2017):

ϕi(x) =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!

×
[
fS∪{i}(xS∪{i})− fS(xS)

]
(2)

in which F \ {i} represents the power set of all possi-
ble feature sets that exclude feature i, and the quantity
fS∪{i}(xS∪{i}) − fS(xS) represents the effect from includ-
ing feature i to the subset S. In practice, the exact compu-
tation of a Shapley value will require 2m evaluations and is
infeasible for high-dimensional problems such as engineering
prognostics. Due to this combinatorial complexity, Štrumbelj
and Kononenko (2014) proposed the IME algorithm centered
around an unbiased random order Monte Carlo (MC) estima-
tor based on drawing N samples:

ϕ̂i,N (x) =
1

N

N∑
j=1

Vj(x) (3)
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where Vj(x) are samples drawn with replacement from
a weighted distribution approximating the values of
fS∪{i}(xS∪{i}) − fS(xS). This is accomplished by per-
muting and splicing feature values from different instances,
and we refer to Štrumbelj and Kononenko (2014) for the full
derivation. Once the MC estimates are obtained, a local pre-
diction f̂N (x) can be formed for the explicand:

f(x) ≈ f̂N (x) = ϕ̂0,N +

m∑
i=1

ϕ̂i,N (x). (4)

We extract the explanation uncertainty for the above stochas-
tic Shapley value approximation procedure by forming the
mean and variance of the N -sample estimator f̂N (x):

µf̂N (x) ≡ E
[
f̂N (x)

]
= E

[
ϕ̂0,N

]
+

m∑
i=1

E
[
ϕ̂i,N (x)

]
, (5)

σ2
f̂N (x)

≡ Var
[
f̂N (x)

]
= Var

[
ϕ̂0,N

]
+

m∑
i=1

Var
[
ϕ̂i,N (x)

]
+

m∑
i=0

m∑
j>i

2Cov
(
ϕ̂i,N (x), ϕ̂j,N (x)

)
. (6)

From Eq. (5), we can see that the mean of the estima-
tor E[f̂N (x)] = f(x) since each ϕ̂i,N (x) is unbiased (i.e.
E[ϕ̂i,N (x)] = ϕi,N (x)) and so Eq. (5) reduces back to Eq.
(1). Hence, the estimator f̂N (x) is unbiased. In Eq. (6), the
explanation variance requires the full covariance among all
the ϕ̂i,N (x) since they are not independent during the IME
sampling process. In the limit of large N , the Central Limit
Theorem further implies that the distribution of the estimator
f̂N (x) converges towards a normal N

(
µf̂N (x), σ

2
f̂N (x)

)
.

In our implementation, we estimate these mean and covari-
ance terms numerically through replicating the ϕ̂i,N (x) ap-
proximation K times and then computing their empirical
mean and covariance.

3. CASE STUDY

The 2021 PHM Data Challenge benchmark problem consists
of synthetic run-to-failure trajectories of a small fleet of tur-
obfan engines (Chao et al., 2021a). The engines are simu-
lated with realistic flight conditions, and the objective is to
predict the RUL of the engines (Chao et al., 2021b) given
time series sensor signals. The dataset contains labeled fail-
ure mode information pertaining to five rotating components:
fan, high-pressure compressor (HPC), low-pressure compres-
sor (LPC), high-pressure turbine (HPT), and low-pressure
turbine (LPT). This paper builds on previous XAI work on
this dataset, which used Shapley-based explanations to derive
meaningful clusters for the context of predicting future faults

and the RUL (Cohen et al., 2023).

3.1. Results

Simple statistical features measured per flight cycle (such as
minimum, first quartile, median, third quartile, maximum,
mean, and standard deviation) are extracted from each time
series signal. In total, 129 features are extracted based on
the variables detailed in Table 1. Following data mining, the
dataset is randomly split across all engine units using an 80%-
20% training-testing ratio, and min-max normalization is per-
formed and applied based on the training set. The testing set
contains data from 1365 flight cycles, and will be analyzed
for identifying key features explaining RUL predictions. To
generate the RUL predictions, we adopt a 3-layer neural net-
work with 64 and 32 neurons in the hidden layers and with
RELU activations, and train it with the ADAM optimization
algorithm. The neural network is built using Flux, a deep
learning library supported by the Julia programming language
(Innes, 2018). For more information for the developed pre-
dictive model and its performance, we refer to past work by
Cohen et al. (2023).

Table 1. Auxiliary, operating conditions, and sensor mea-
surement signal variable descriptions from PHM 2021 Data
Challenge (Chao et al., 2021b).

Variable Symbol Description Units
A1 unit Unit number -
A2 cycle Flight cycle number -
A3 Fc Flight class -
W1 alt Altitude ft
W2 Mach Mach number -
W3 TRA Throttle-Resolver angle %
W4 T2 Total temp. at fan inlet ◦R
Xs1 Wf Fuel flow pps
Xs2 Nf Physical fan speed rpm
Xs3 Nc Physical core speed rpm
Xs4 T24 Total temp. at LPC outlet ◦R
Xs5 T30 Total temp. at HPC outlet ◦R
Xs6 T48 Total temp. at HPT outlet ◦R
Xs7 T50 Total temp. at LPT outlet ◦R
Xs8 P15 Total pressure in bypass-duct psia
Xs9 P2 Total pressure at fan inlet psia
Xs10 P21 Total pressure at fan outlet psia
Xs11 P24 Total pressure at LPC outlet psia
Xs12 Ps30 Static pressure at HPC outlet psia
Xs13 P40 Total pressure at burner outlet psia
Xs14 P50 Total pressure at LPT outlet psia

To obtain stochastic Shapley explanations, we utilize
ShapML.jl, a relatively efficient Julia implementation of
the IME algorithm that has successfully been benchmarked
against other state-of-the-art Shapley estimation algorithms
such as FastSHAP (Redell, 2020). To obtain the explana-
tion uncertainty, we perform K = 30 replicates with sample
sizes of N ∈ {10, 30, 50, 100}, randomizing and document-
ing the ShapML seed parameter in each replicate to ensure
reproducibility. A key empirical finding is that despite ob-
taining a unique covariance matrix for each explicand, the
overall explanation uncertainty is the same for all expli-
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Figure 1. Beeswarm visualization ranking top 10 features in
terms of mean Shapley effect, with explicands plotted and
colored by normalized feature values.

cands for a given N . This has significant implications for
quantifying explanation uncertainty of Shapley approxima-
tions derived from MC sampling. To the authors’ knowledge,
this relationship has not yet been explored in the literature
and will require careful examination in future work.

Table 2 provides the runtime and explanation standard devia-
tion for these experiments, benchmarked on a local MacBook
Pro machine running macOS Ventura 13.2.1 with Apple M2
Max CPU and 32 GB of RAM. We note the efficiency of these
computations, highlighting promising potential for Shapley
explanations for high-dimensional prognostics applications.

Table 2. Standard deviation of a prediction’s explanation and
runtime for K = 30 replicates of N -sample estimators for
Shapley attributions.

MC Samples N = 10 N = 30 N = 50 N = 100

σf̂N (x) (cycles) 5.39 3.46 2.61 1.79

Runtime (s) 187.50 624.81 902.27 1807.38

As performed by Senoner et al. (2022), a practical application
of Shapley explanations for industrial use cases is to rank ob-
servable features in terms of mean absolute Shapley effect.
In this case, this ranking provides the operator with key in-
formation and answers the following question: out of 129
collected features, which ones influence the developed data-
driven RUL predictive model most? The beeswarm plot visu-
alization in Fig. 1 serves as an informative summary ranking
the top 10 most influential features, with the horizontal and
color axes depicting how their distributions impact RUL pre-
dictions. The beeswarm plot is useful for succinctly illustrat-
ing global behavior and tendencies of the underlying predic-
tive model based on the individual Shapley explanations.

A novel visualization to aid with the interpretability of indi-
vidual predictions illustrating Shapley uncertainties is shown

in Fig. 2. This plot depicts the “personalized prediction
recipe” for a sample approaching the rated end-of-life for
the engine unit. This plot is sorted by ranking mean abso-
lute Shapley effects for a specific explicand, with the vertical
axis showcasing the marginal contributions to RUL predic-
tions relative to the estimated baseline. The error bars illus-
trate approximately 95% confidence intervals (two standard
deviations).

Finally, the explained RUL prediction is represented by
adding all the Shapley estimates and baseline, as in Eq. (4).
The confidence interval of the explanation is derived from
the overall explanation uncertainty shown in Eq. (6), also re-
ported at the approximate 95% confidence level (±2σf̂N (x)).

3.2. Discussion

Quantifying explanation uncertainty with the technique de-
veloped in this paper is helpful to clearly understand the
impact of random variation on stochastic Shapley explana-
tions. Because of the computational effort required to calcu-
late Shapley effects deterministically, estimating the effects
with a random order approach has distinct computational ben-
efits, particularly when it is possible to perform uncertainty
quantification.

The insights revealed in the case study are intuitive, but may
also be surprising for practitioners. For example, in Fig. 1,
the top 3 features include the current cycle (high feature val-
ues correlate with lower RUL), mean total pressure from the
LPT outlet (high feature values correlate with higher RUL),
and mean total temperature at LPC outlet (high feature values
correlate with lower RUL). While some of the relationships
in this plot are expected, 3 of the top 10 features included are
from the scenario descriptor variables (mean and third quar-
tile of the altitude as well as mean throttle-resolver angle).

This, in addition to the personalized prediction recipe pic-
tured in Fig. 2, are excellent examples of XAI illuminat-
ing potentially undesirable traits of underlying models. XAI
raises fundamental questions: should we trust models that
are so heavily impacted by potentially noncausative features?
Although we are able to generate more accurate predictions
with this information, are those models useful in practice?
Practitioners must be careful in interpreting Shapley explana-
tions: all explanations are based on the dataset, model cho-
sen, and the biases—explicit or implicit—underneath these
structures. Shapley explanations merely help demystify pre-
dictions made from a black-box model, and additional exper-
imentation is required to identify causal relationships.

The method developed in this paper aims to quantify explana-
tion uncertainty limited to the variance of relatively efficient
stochastic approximations of Shapley effects. Using this tech-
nique, the user can quantify the overall explanation uncer-
tainty based on the fundamental property of local accuracy
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Figure 2. Personalized prediction recipe plot of a data sample approaching the engine’s end-of-life. Adding the means and
covariance elements of the marginal contributions (including the other 119 not pictured) plus the baseline will linearly approx-
imate the prediction and explanation uncertainty. The mean pressure from LPT outlet, mean throttle-resolver angle, and third
quartile of the altitude signals have the greatest absolute mean effect on the prediction for ths sample.

from Shapley theory. Fascinatingly, for a given number of
N MC samples, summing the Shapley estimates’ variances
and covariances will lead to an empirically constant explana-
tion uncertainty regardless of which explicand is examined.
Future work must further examine this finding, and consider
other sources of uncertainties to fully tackle the problem of
trustworthy data-driven modeling under uncertainty.

4. CONCLUSION

Shapley explanation theory is gaining in popularity to help
explain black-box data-driven models. The simplicity of ad-
ditive explanations is desirable for industry practitioners, but
the computational expense of deterministic estimation meth-
ods may not be practical for high-dimensional problems.
Quantifying the uncertainty of stochastic approximations of
Shapley values is key to trusting explanations, and by exten-
sion, their respective models. To summarize its contributions,
this paper developed:

1. An approach to efficiently estimate the explanation un-
certainty purely derived from the random variation of es-
timating Shapley values;

2. Implementation of the explanation uncertainty concept
to a high-dimensional use case, empirically finding that
the total explanation uncertainty is constant across expli-
cands for a given IME estimator; and

3. Personalized prediction recipe plots to help illustrate the
uncertainties of the estimated marginal Shapley effects
for a single additive explanation.

We believe these findings will encourage further contribu-
tions at the intersection of XAI and prognostics. Improved

explainability will allow for more transparent, trustworthy,
and effective industrial decision-making powered by big data.
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