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ABSTRACT 

This paper presents a non-contact fault diagnostic method 

for ball bearing using adaptive wavelet denoising, 

statistical-spectral acoustic features, and one-dimensional 

(1D) convolutional neural networks (CNN). The health 

conditions of the ball bearing are monitored by microphone 

under noisy condition. To eliminate noise, adaptive wavelet 

denoising method based on kurtosis-entropy (KE) index is 

proposed. Multiple acoustic features are extracted base on 

expert knowledge. The 1D ResNet is used to classify the 

health conditions of the bearings. Case study is presented to 

examine the proposed method’s capability to monitor the 

condition of ball bearings. The fault diagnosis results were 

compared with and without the adaptive wavelet denoising. 

The results show its effectiveness of the proposed fault 

diagnostic method using acoustic signals. 

1. INTRODUCTION 

The reliability of rotating machinery can be attributed to 

mechanical faults such as bearing wear-out and lubricant 

deterioration. For consumer electronics products having 

rotating machinery, the reliability of ball bearing should be 

evaluated in the qualification testing. However, the 

qualification test requires a long time. It is a serious obstacle 

to rapid deployment of a new product. To address this 

obstacle, the scheme of accelerated life testing can be 

employed with the health condition monitoring of the ball 

bearing using vibration sensors. However, vibration sensors 

have severe data changes depending on the attachment 

location [1]. These problems make it difficult for non-

experts to proceed the accelerated life testing. To solve this 

problem, a diagnostic method for ball bearing using a non-

contact sensor such as a microphone is required in the 

industrial field. However, signals from microphone are 

easily affected by external noise, so there are many 

difficulties in developing a methodology using microphone. 

Noise generated from the mechanical or electrical 

components degrades the fault diagnosis performance. 

Therefore, a signal preprocessing process for noise 

reduction is essential for accurate fault diagnosis. There 

exist many signal processing methods available for ball 

bearing fault detection, including envelope analysis [2], 

kurtogram [3], spectral kurtosis (SK) [4], and singular value 

decomposition (SVD) [5]. However, all these methods have 

limitations in detecting non-stationary weak fault features. 

Due to the above issues about detecting non-stationary weak 

fault features, the wavelet transforms (WT) is considered in 

many researches [6, 7]. WT is a very effective tool for non-

stationary signal processing methods that can detect a weak 

signal because WT uses basis wavelets similar to the target 

signal which has discontinuous changes in time domain [8]. 

WT has more choices on functions to match specific fault 

symptoms, which is suitable for fault feature extraction. 

Recently, the noise reduction method using WT based on its 

characteristics in signal processing has been conducted [9]. 

However, there is a difference in noise reduction 

performance depending on basis wavelet selected from 

various families of wavelet such as Daubechies, Symlet, and 

Morlet. Therefore, choosing an appropriate basis wavelet is 

a crucial step for the application of the WT. 

This study presents a non-contact diagnostic method for ball 

bearing that combines adaptive wavelet denoising, domain- 

statistical-spectral acoustic features, and 1D CNN 

classifiers. The goal of this study is to develop an acoustic 

signal-based diagnosis method that can be used to evaluate 

the durability of ball bearing during product qualification 

under noisy condition. This paper is organized as follows. In 

Section 2, the framework of the proposed diagnostic method 

is described. This section describes two points: (1) how to 

optimize basis wavelet in terms of denoising, and (2) what 

is the statistical-spectral acoustic features. In Section 3, a 

case study using KAIST bearing testbed is presented to 

evaluate the proposed method. Section 4 concludes this 

work with future works. 
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2. PROPOSED METHOD 

2.1. Adaptive Wavelet Denoising 

Kurtosis is the normalized version of the fourth central 

statistical moment of the distributions, it is large for 'spiky' 

or impulsive signals, because of the considerable weighting 

given to local spikes by taking the fourth power [10]. 

Therefore, Kurtosis is especially used to reflect the 

mechanical incipient fault, because most fault features are 

sensitive to sharp changes of signals, such as impulses. 

Thus, the maximum kurtosis of the detailed coefficients is 

recommended in seeking the optimal wavelet functions. 

However, the maximum kurtosis of detailed coefficients is 

not always effective for guiding the adaptive construction of 

WT. When the ball bearing emerges incipient fault, kurtosis 

increases obviously. However, kurtosis decreases and 

remains relatively stable in the later fault period. Therefore, 

kurtosis index is not effective in detecting periodical 

impulses.  

In information theory, the information entropy of a random 

variable is the average information provided by each 

variable and the average uncertainty of the information 

source [11]. The information entropy can provide useful 

knowledge on the status of dynamic process. The 

mechanical fault represents periodic impulsive features that 

can be detected through the spectrum. At this point, when 

the fault features dominate the signal, the spectral entropy 

value decreases, while the normal features dominate signal, 

the spectral entropy value increases. Spectral entropy can 

reflect the definite degree of the spectrum. 

This paper proposed a new denoising index that combines 

with kurtosis and spectrum entropy, so-called kurtosis-

spectrum entropy (KE) index as following Equation (1). If 

the signal is well filtered, the kurtosis value is large for the 

early defect, and the spectrum entropy value is small for the 

late faulty signal.  Also, the KE value of the normal signal is 

smaller than the faulty signal because the normal signal is 

not impulsive than the faulty signal. Therefore, the 

maximum KE of detailed coefficients is used to seek the 

optimal hyperparameters of wavelet denoising. 
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where KP is the kurtosis value of the signal; Ef is the 

entropy value of the spectrum; x(n) is the nth data value of 

the signals; μ is the mean value of the signals; σ is the 

standard deviation of the signals; N is the length of the 

signals; sk is the kth amplitude of the spectrum; K is the 

length of the spectrum; and p is the probability density 

function, respectively. 

 

2.2. Statistical-Spectral Acoustic Features and 1D 

Convolutional Neural Networks 

The statistical-spectral acoustic features are composed of 

time domain, frequency domain, and bearing-related 

features as shown in Table 1. The time domain features are 

calculated by characteristic features from time domain 

signals. It associated with statistical characteristics of the 

acoustic emission. The frequency domain features are based 

on the transformed signal in frequency domain. It means 

energy characteristics of the acoustic emission at the 

corresponding frequency. The bearing-related features are 

the energy characteristics excited by defects in bearing 

elements. The defects in bearings generate impulses with 

very short duration to the rotating system. 

Table 1. Statistical-spectral acoustic features. 
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The frequency domain features of bearing defect are 

extracted in frequency domain. There were two issues when 

the feature values are extracted. First, the frequency range 

associated with individual features should be selected 

carefully. The frequency related to each feature is not fixed 

but fluctuating as the actual speed of the electric motor 

changes over time. In order to address this problem, the 

frequency range related to each feature is determined so that 

the frequency ranges of two different features do not overlap 

each other. 

Second, the features should be normalized to avoid the 

numerical instability. It is desirable to scale the magnitudes 

of different features so that they are in the same order. 

Several methods can be used to normalize the features. In 

this study, fourteen features with respect to individual 

bearing conditions are normalized using the following 

equation. 
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where i is the feature number; j is the number associated 

with the conditions of rolling element bearings; Xij is the ith 

feature value of the jth condition; and μi and σi are the mean 

and standard deviation of the ith feature, respectively. 

1D CNN architectures derives features from one 

dimensional vectors of the dataset. The 1D CNN can be 

used to the analysis of a fixed-length period signal data such 

as audio signals. The statistical-spectral acoustic features 

have the fixed-length period signal that is suitable for the 

application of 1D CNN. In this work, ResNet modules are 

modified. In modified ResNet, the kernel size is 3 by 1. The 

ResNet architecture consists of 20 layers. A single 1D 

convolutional layer is in the first layer. Additional nine 

modified ResNet modules are added. One fully-connected 

layer is in the last layer. 

 

3. CASE STUDY 

3.1. Experiment Setup 

KAIST bearing testbed has two bearings connected to the 

motor rotating shaft. The motor rotates at 1505 rpm, 

doubled through the gearbox, and the bearings rotate at 

3010 rpm. The specification of the bearing is NSK 6205 

DDU. Five conditions of bearings are composed of normal, 

outer race fault (0.3 mm and 1.0 mm), and inner race fault 

(0.3 mm and 1.0 mm). The faults were artificially applied 

for each crack size as shown in Figure 1. Acoustic signals 

were collected from microphone with sampling rate of 

51200 Hz. The acoustic signals were collected every two 

minutes. The microphone installed near the Bearing A 

housing of the KAIST bearing testbed. In this paper, PCB 

378B02 microphone manufactured by PCB Piezotronics is 

used. 

The modified ResNet was trained using the Adam optimizer 

with the learning rate between 0.001 and 0.0001. The batch 

size for training and testing was 32. The training data was 

composed of one-second signal by overlapping the entire 

signal after adaptive wavelet denoising. The rate of 

overlapping is ten percent. Training data are converted to 

statistical-spectral acoustic features and labeled in five 

classes including normal, outer race fault (0.3 mm and 1.0 

mm), and inner race fault (0.3 mm and 1.0 mm). The 

training data of 3,840 and the test data of 960 are used. 

3.2. Results and Discussion 

The original acoustic signals with log Mel-spectrogram 

according to each condition of bearing are presented as 

shown in Figure 2. The original acoustic signals have a lot 

of noisy components due to unknown noises from other 

machinery and external environment, it is difficult to 

classify the signal with normal or fault label. To tackle this 

problem, adaptive wavelet denoising method is used. The 

hyperparameters of wavelet denoising are optimized using 

the KE index. Optimal hyperparameters are selected to have 

maximum KE index value among the 270 basis wavelet 

functions in wavelet families such as Daubechies, Symlet, 

Coiflet, Morlet, and Biorthogonal wavelet. As a result, 

‘Biorthogonal3.1’ wavelet is selected for normal, ‘Coiflet1’ 

wavelet is selected for outer race fault (0.3 mm) and inner 

race fault (0.3 mm and 1.0 mm). ‘Daubechies37’ wavelet is 

selected for outer race fault (1.0 mm). The filtered acoustic 

signals with log Mel-spectrogram are shown in Figure 3. In 

the filtered signals, the characteristics of each outer race 

defect and inner race defect are prominently displayed. In 

particular, it can be seen that the defect frequency 

components for outer ring defects and inner ring defects are 

prominent and their KE value is higher. 

The statistical-spectral acoustic features were visualized as 

images as shown in Figure 4. When changing from normal 

signal to faulty signal, the values of dominant features are 

    
a)                                       b) 

 

           
c)                                      d) 

 

Figure 1. Fault seeding of ball bearing: a) outer race fault 0.3 mm, 

b) outer race fault 1.0 mm, c) inner race fault 0.3 mm, and d) inner 

race fault 1.0 mm. 
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changing from the statistical time features to periodic 

frequency features. The color change of the bearing defect 

feature such as ball pass frequency of the outer race 

(BPFO), and ball pass frequency of the inner race (BPFI) 

can be observed from the 11th feature and 12th feature in 

the images. The change is attributed to the increased 

severity of bearing defects. For example, in outer race fault, 

the 11th feature (BPFO) is more dominant than other 

features when the severity increase. Also, in inner race fault, 

the 12th feature (BPFI) is more dominant than other features 

when the severity increase. Therefore, the images in Figure 

3 and Figure 4 showed that the statistical-spectral acoustic 

features reflect the characteristics of the motor bearing 

degradation in life testing by effectively capturing the health 

condition of ball bearing. 

 

 

 

 

 
a) 

 

 
b) 

 

 
c) 

 

 
d) 

 

 
e) 

  

Figure 4. Normalized statistical-spectral acoustic features after 

adaptive wavelet denoising: a) normal, b) outer race fault 0.3 mm, 

c) outer race fault 1.0 mm, d) inner race fault 0.3 mm, and e) inner 

race fault 1.0 mm. 

 
        a) 

 
        b) 

 
      c) 

  

Figure 3. Log Mel-spectrogram of denoised acoustic signals: a) 

normal, b) outer race fault 1.0 mm, and c) inner race fault 1.0 mm. 
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         a) 

 
       b)  

 
       c) 

  

Figure 2. Log Mel-spectrogram of original acoustic signals: a) 

normal, b) outer race fault 1.0 mm, and c) inner race fault 1.0 mm. 
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4. CONCLUSION 

In this work, an acoustic signal based non-contact diagnosis 

method was proposed to determine the health condition of 

ball bearing using statistical-spectral acoustic features with 

adaptive wavelet denoising and 1D CNN. To evaluate the 

performance of the method, different types of data including 

raw acoustic signals, acoustic features without denoising 

method are used. The statistical-spectral acoustic features 

with proposed adaptive denoising method showed better 

performance in 1D ResNet-20. This study expected that the 

non-contact diagnostic approach can be used to evaluate the 

durability of ball bearing during product qualification using 

microphone signal under noisy condition. For future studies, 

a novel feature extraction method for early fault detection 

based on cyclostationary signals will be studied. 
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Table 2. Fault diagnosis accuracy according to data type. 

 Data type Test accuracy 

Raw acoustic signals  

without denoising 
52.1 % 

Raw acoustic signals  

with denoising 
72.8 % 

Statistical-spectral acoustic features 

without denoising 
60.0 % 

Statistical-spectral acoustic features 

with denoising 
91.8 % 

 


