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ABSTRACT 

A machine’s Remaining Useful Life (RUL) is the expected 

life or usage time remaining before the machine requires 

repair or replacement. In data-driven methods, typical RUL 

estimation is performed using models trained with health 

condition indicator values derived from measured system 

data. A significant challenge in developing an RUL 

estimation model is transforming large, multivariate, noisy 

sensor datasets into useful format(s) that make the data 

analysis and processing pipeline efficient and extract 

valuable condition indicators from the data. This work uses 

the N-CMAPSS dataset to explore options and implications 

for efficiently organizing and storing large time-series 

datasets to support prognostics and diagnostics applications. 

We extend the work to demonstrate a predictive maintenance 

workflow and solution to (1) detect and classify faults in a 

turbofan engine and (2) estimate the RUL once we detect 

performance degradation.  

Under data engineering, we investigate the impact of various 

file formats and file types on memory and execution time 

when dealing with large datasets like N-CMAPSS. We 

analyze, pre-process, and extract/engineer critical features 

from the transformed dataset by leveraging our 

understanding of gas turbines' operation (e.g., Brayton 

Cycle). We also analyze the performance of various engine 

submodules for different flight phases (climb, cruise, and 

descent). This work also explains an approach to down-

sample the time series data without losing information 

relevant to our goals. Using the health condition indicators 

derived and synthesized in the data engineering stage, we 

train machine learning models for diagnostics (differentiate 

between healthy operation and seven different types of faults 

in the turbofan engine) and prognostics (RUL estimation). 

1. INTRODUCTION 

Predictive maintenance can be considered the holy grail of 

industrial machinery equipment manufacturers and operators. 

It helps monitor the health of equipment to estimate its 

Remaining Useful Life (RUL). These techniques will help 

transition from reactive maintenance to a preventive and 

optimized maintenance strategy. There is immense value to 

gain from having a proactive maintenance strategy, such as 

cost savings [1], productivity increase for the maintenance 

crew, and even opening new service/revenue streams [2]. 

This paper focuses on a data-driven approach to aircraft 

engine prognostics and diagnostics. We used the N-CMAPSS 

dataset [3] to demonstrate a predictive maintenance 

development workflow, and we answered the three main 

questions for any predictive maintenance application: 1. Is 

our aircraft engine or engine components’ health degrading 

at an abnormal rate? 2. Which subsystem(s) is failing? and 3. 

How many flight cycles remain before the engine fails? 

Figure 1 depicts a typical data-driven predictive maintenance 

development workflow. In the work, we will delve into key 

aspects of each stage in the workflow. Reliable data pipelines 

ensure the availability of high-quality data, enabling accurate 

predictive models. We will focus on the data engineering 

portion of the workflow. We touch upon transforming data 

into usable formats and comparison of these formats’ impact 
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on memory footprint and computation time. We will briefly 

describe the N-CMAPSS dataset, explain each step of the 

workflow and our implementation details, and conclude with 

potential extensions to this work. We will not focus on the 

deployment stage in this paper. 

Figure 1 A typical data-driven Predictive Maintenance development workflow 

2. DESCRIPTION OF DATASET 

N-CMAPSS refers to a new and improved version of the 

CMAPSS dataset [4]. CMAPSS stands for Commercial 

Modular Aero-Propulsion System Simulation, the high-

fidelity system model developed at NASA used to generate 

the dataset. The dataset contains eight run-to-failure 

trajectories for a fleet of 128 aircraft engines under different 

flight conditions. Failures can occur in either the flow (F) or 

efficiency (E) of different subsystems: fan, low-pressure 

compressor (LPC), high-pressure compressor (HPC), high-

pressure turbine (HPT), and low-pressure turbine (LPT), as 

indicated in Table 1. 

Table 1 Overview of N-CMAPSS datasets [3] 

 

Each file contains the simulated results of aircraft engines as 

second-by-second flight data up to 100 flights or engine 

failure, whichever comes first. Each unit experiences flights 

of a specific duration, indicated by flight class, and enters an 

"abnormal degradation state" randomly according to the file 

number and specified failure type. 

In the dataset, we have access to: 

• Generic airflow cycle measurements across the 

engine length, such as total temperature, pressure, 

and flow.  

• Two rotor speeds, compressor stall margins, and 

some operational parameters (e.g., Mach number, 

altitude, throttle resolver angle, current cycle count, 

and flight class).  

• A binary health state indicator and RUL label. 

• A passenger/commercial aircraft goes through a 

well-defined mission: ground idle, take off, climb, 

cruise/mini-cruise, and descend. Only the climb, 

cruise, flight idle, and descend information in this 

dataset is present. 

3. WORKFLOW, IMPLEMENTATION & RESULTS 

As described in the introduction, we followed the workflow 

depicted in Figure 1 with the iteration of some stages to 

improve performance based on our observations at each 

stage. The workflow and analysis described in this paper are 

implemented using MATLAB R2023a [5]. We will highlight 

the salient aspects of each step of the workflow in this 

section. 

3.1. Data Access & Restructuring 

It is well known that schema and storage format can impact 

processing performance, drive footprint, portability, 

readability, and ease of access to data. The initial dataset was 

provided in a set of HDF5 files. This storage solution may be 

preferred if the analysis was performed with Hadoop or 

Spark. However, in this case, the compute environment was 

MathWorks Cloud Center using 24 parallel workers on an 

AWS instance with a 2.5Ghz Intel Xeon Platinum 8259CL 

CPU. A trade study was performed to determine if the data 

should be refactored into a new schema or file format for the 

best performance in our compute environment.  

MATLAB® datastore enables us to point to the location of the 

data, ingest it using a built-in h5read function, and establish 

a transformation pipeline with the datastore methods 

readall and writeall. We explore several data 

configurations by refactoring the original dataset with help 

from built-in write functions: save, writetable, and 

parquetwrite. The configurations are described in Table 

2 [6], along with their disk footprint and the time it took to 

write them to the disk. 

The selected data configurations were then exercised with 

two tasks: separate flight phases (Figure 5b) and report full 

dataset mean temperature difference across high-pressure 

turbines (Figure 2a). The datastore construct in MATLAB 

provides many tools for working with data that will not fit 

into memory or exists across many files. Common large data 

analysis methods like transform and tall are used to address 

the two tasks. The transform function exercises a function on 
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each element of a datastore to produce a 

TransformedDatastore, which can be read into 

memory or written back to disk. The transformation is only 

executed at read or write time and is optimized by MATLAB. 

In the case of this flight data, tall can produce a single 

monolithic table where all flight data has been vertically 

concatenated. The tall table object is not loaded into 

memory, and MATLAB can still interrogate this object as if 

it were a table in memory. 

Table 2 Data configuration trade study. Disk size of final dataset reported in Gb, write time for the dataset in Minutes, 

ranking for access and readability from 1 (best) to n (worst), and whether the file format is portable (Y/N). 
 Wide Narrow Nested   

 
Disk 

(Gb) 

Write 

(min) 

Disk 

(Gb) 

Write 

(min) 

Disk 

(Gb) 

Write 

(min) 
Access Portable 

HDF5 27.2 0 - - - - 4 Yes 

CSV 27.3 N/A 50.5 32.6 - - 3 Yes 

MAT 12.0 4.41 9.43 6.15 8.26 6.41 2 No 

Parquet 12.0 4.57 11.3 6.05 12.0 6.30 1 Yes 

 

Readability 1 3 2 - - 

Access 1 3 2 - - 

 

 
Figure 2 (a) Scatter plot of Engine age vs. Temperature and HPT Entry temperature, (b) Histogram of count of flights vs. the 

temperature drop across HPT 

 
Figure 3 Comparison of computation time for Flight phase segmentation and HPT temperature for various data formats



The flight phase separation task used the datastore transform 

workflow. The designed transform function contains two 

steps for each flight: 

1. Smooth data. Each flight contains climb, cruise, and 

descend phases, impacting the engine operation differently. 

We investigated whether data from some flight phases are 

more useful for identifying faults. Smoothing the differences 

in altitude will give us a cleaner way to apply a threshold to 

determine when the aircraft is in each flight phase, as shown 

in Figure 5.  

2. Segment flight data. In smoothed plot, it becomes 

clear from the smoothed data when the aircraft is climbing, 

descending, or cruising. We can now apply a threshold to 

identify the flight phases and color-code them for easy 

analysis. The threshold value was specified after 

experimentation with single-flight data and scaling it up for 

the whole dataset.  

The transform function produces an array of categorical 

labels indicating the flight phase for each sample in the time 

series data. The total time to read this information back into 

memory was recorded.  

The second task was informed by domain expertise. The 

temperature drop across the HPT is a good measure of its 

overall health [7]. In this case, a tall table is created from the 

dataset, and the temperature drop is calculated. Functions 

such as gscatter [6] help to visualize these relationships, 

as shown in Figure 2a. The figure shows a strong relationship 

between the age of the engine and the temperature drop 

across HPT. 

Tasks 1 and 2 were executed on the contents of the first HDF5 

file, the first two files, the first three files, and so on until all 

nine files were evaluated to understand the impact of 

increasing dataset size. The resulting execution times (Figure 

3), in addition to the performance metrics table (Table 2), 

gave us the motivation to refactor the dataset into a wide-

schema set of parquet files for further processing and feature 

engineering. 

3.2. Data Pre-processing and Feature Engineering 

As with most sensor data, you need to clean and transform 

the raw data to create/identify the right set of condition 

indicators for any given asset. This is true even in the N-

CMAPSS dataset. Figure 4 depicts the simplified data pre-

processing steps we used in our work. 

 

Figure 4 Data pre-processing steps 

The flight phase extraction performed in task 1 of the 

performance evaluation for the data schema and format 

comprised the first portion of the pre-processing workflow 

for the dataset. A third and final step and data reduction were 

carried out as follows: 

Reduce data: As we build this data by recording more flight 

data, the storage costs of retaining the complete dataset and 

processing time to train our algorithms will increase. Instead 

of simply downsizing, we extract change points from each 

sensor trajectory to retain its shape to reduce the data while 

maintaining enough useful information. We easily achieved 

this data reduction using the findchangepoints 

algorithm in MATLAB [6]. We prototype the algorithm with 

one sensor data and scale it up to apply it to the entire dataset 

(Figure 5). We were able to reduce the memory footprint 

from 18 GB to 7GB with this technique. A word of caution: 

this approach may not be a good technique if there are 

features of interest in the frequency domain. 

Engine behavior is different in each flight phase. Therefore, 

we explore features from each flight phase individually. We 

focused on time-domain statistics such as the mean, standard 

error of the mean, standard deviation, skewness, variance, 

minimum, maximum, and range. We extracted a total of 361 

features from the dataset, and based on the ANOVA 

algorithm, we selected the top 25 ranked features. We also 

engineered some features like temperature difference and 

pressure ratio across various subsystems and estimated their 

trendability. All of this feature engineering was semi-

automated using MATLAB's Diagnostic Feature Designer 

app [6]. 

 
Figure 5 (a) Smooth data, b) Flight phase segmentation based on threshold, c) Reduction of data using change points 
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Figure 6 Visualization of health indicator trends, RUL estimation and Probability Density Function of RUL as new data 

streams into the data processing pipeline

 

4. AI MODELING  

There are two critical questions for any predictive 

maintenance application in the AI modeling stage. First, 

which subsystem of the turbofan engine is failing? We treat 

this question as a fault classification problem. Second, what 

is the remaining useful life of the turbofan engine? We 

estimate the number of flight cycles the engine can operate 

before it needs to be scheduled for maintenance. 

Fault classification: We train a set of machine learning 

models using the selected features and corresponding health 

labels. Using the Classification Learner app [8], we train 

multiple machine learning models [8] in parallel and compare 

and evaluate their performance with the test data using a 

confusion matrix and looking at the prediction accuracy. In 

our tests, narrow neural network models using cruise phase 

data were the best-performing model for turbofan engine 

fault classification with a prediction accuracy of 86.9%. 

RUL Estimation: Estimating the RUL is a crucial part of the 

predictive maintenance solution. Together with fault 

classification, we will be able to give a complete picture of 

the health of the turbofan engine – which part is failing and 

how much time remains before requiring maintenance action. 

Our analysis showed temperature drop across HPT and the 

pressure ratio across LPT are good health indicators for HPT 

and LPT failure, respectively. 

As multiple failure mode events are simulated in parallel, we 

use an Exponential Degradation model [9] as the RUL 

estimator model with a pre-defined threshold value (based on 

historical evidence). We can now use the selected health 

indicators to fit RUL models for each failure mode. We can 

also provide a complete classification and RUL estimation 

workflow combined with the fault classification model. We 

build a simple engine health monitoring dashboard (See 

Figure 6) that visualizes the evolution of the health indicator, 

estimated RUL, and the probability density function of RUL 

as new data from various engine unit streams into the data 

processing pipeline. 

5. DISCUSSION & CONCLUSION 

This work demonstrates a streamlined workflow for 

developing a predictive maintenance application that gives 

two important pieces of information: the failing subsystem(s) 

and the RUL estimation. We touched upon all the key stages 

in the development workflow. 

Using the N-CMAPSS dataset, the paper delved into the 

importance of data engineering and how seemingly simple 

decisions like selecting data formats significantly impact the 

computation time and memory footprint along with easing or 

worsening the data readability and access. For the N-

CMAPSS dataset, we found that the parquet wide format 

gave the best performance and ease of use. We also 

showcased an approach to reduce the dataset size without 

losing useful dynamics and trends in the sensor data.  

We described our workflow in a linear fashion. However, 

developing a robust and reliable analytics pipeline requires 

iterating over each stage and improving the prediction 

performance, whether it is through enhancing data pre-

processing, featuring engineering and selection, or picking 

the right AI model. Though we demonstrated the workflow 

using a turbofan engine example, we believe this approach 

can be generalized for any industrial machinery. 

An important limitation of the method described is that only 

one type of fault is identified in the fault classification stage. 

For example, if there is an HPT and LPT failure, it is treated 
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as just an HPT failure. This is primarily due to the challenge 

in creating an feature extraction algorithm that can delineate 

patterns in sensor data due to different faults. One of the 

approach could be to model the subsystem and various faults 

to understand the faults and its effect on sensor data [10] 

There is potential to extend this work by exploring various 

deployment options, whether to a cloud computing platform 

or as a desktop application for offline data analysis. 

Deploying the feature extraction module to edge devices to 

reduce memory storage and data transmission cost is also 

worth exploring. Using Deep Learning techniques for RUL 

estimation could also be another method to explore. 
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