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ABSTRACT 

In recent years, satellites have become an indispensable 

infrastructure in our lives. The number of satellites is 

increasing yearly and becoming increasingly active. To use 

satellites safely, it is crucial to manage them and detect the 

anomaly of satellites as much as possible. However, it 

currently takes skilled operators to detect an anomaly, and it 

is difficult for even skilled operators to detect the anomaly 

early without the telemetry data in cases such as an 

abnormal rotation. To address these challenges, we tested 

the feasibility of using deep metric learning for early 

anomaly detection from the irregularly sampled light curve. 

One of the characteristics of a light curve is unequally 

spaced because the optical sensor on the ground can only 

observe the subject at night and not when the weather is 

terrible. Given an irregularly sampled light curve, our model 

employs a long short-term memory (LSTM) unit of 

encoding the temporal dynamics and learns the embedding 

on the feature space using triplet loss. Then, an anomaly 

score is calculated based on pairwise distances between 

segments from the learned embedding in the feature space. 

With actual data from the satellite being operated, we 

showed the effectiveness of our model and the feasibility of 

early anomaly detection. Also, by exploring learned 

embedding in the feature space, we show that our model 

could capture the continuous state of the satellite. 

1. INTRODUCTION 

In recent years, the use of satellites has become increasingly 

active. It is becoming an indispensable part of our lives. As 

the use of satellites becomes increasingly active, operating 

costs are increasing. To use satellites safely and securely, it 

is necessary to manage their status of satellites. The 

telemetry data is typically used to identify the status of 

satellites. However, for some reason, it may not be 

available, in which case it is necessary to detect the anomaly 

of a satellite by other means. There was an event in which 

the HITOMI manufactured by NEC became out of control, 

and the investigation led to the belief that the cause of this 

event was abnormal rotation. Concerning this event, it was 

challenging to detect the anomaly of the abnormal rotation 

early when telemetry data was unavailable. In reality, such 

an event of abnormal rotation may occur for some reason. If 

it is impossible to utilize the telemetry data in real-time, a 

new way of anomaly detection that does not rely on 

telemetry data is needed. To achieve this, we focused on 

using a light curve as anomaly detection that does not rely 

on telemetry data. Some studies use a light curve for 

anomaly detection. However, these studies are based in a 

supervised manner, requiring a lot of labeled data for 

anomaly detection. 

To address these issues, this paper examines the 

feasibility of the early abnormal rotation detection of 

satellites with Deep Metric Learning for multivariate time 

series retrieval. Metric Learning has been successfully used 

in various fields, including object identification, natural 

language processing, speech recognition, and medical 

diagnosis. Metric Learning aims to acquire the 

representation of data similarity on a distance basis and can 

perform similarity discriminations on unknown data. 

Furthermore, when combined with deep learning, metric 

learning has achieved remarkable results in recent years. In 

doing Deep Metric Learning, we employ triplet loss, which 

is found by Schroff, Kalenichenko, and Philbin (2015), the 

most popular loss function in deep metric learning. Given a 

raw multivariate time series segment, our model performs 

pseudo-labeling based on a distance of time series segment 

to create a dataset for triplet loss, encodes temporal 

dynamics using Long Short-Term Memory (LSTM) which 

is found by Sepp H. and Jürgen S. (1997), and uses triplet 

loss to feature segments of raw time series learning to 

embed on the feature space. In this way, the temporal 

dynamics in the raw time series segment are learned, and the 

feature space embedding can be obtained. The distance of 
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the embedding on the feature space is then computed to 

measure the anomaly score of segments. Based on that 

measurement, the anomaly of a satellite is determined. Our 

model is the first unsupervised learning-based approach for 

early anomaly detection that can acquire temporal dynamics 

in the raw light curve and embedding on the feature space. 

To demonstrate the effectiveness of our model, we used a 

dataset of the irregularly sampled light curve of KIZUNA 

(NORAD ID: 35200). Communication with KIZUNA has 

been disrupted since February 8, 2019. After investigating 

the cause, it is believed that abnormal rotation is occurring. 

Telemetry data was unavailable when the cause was 

investigated, so the light curve was used to investigate. One 

of the characteristics of a light curve is unequally spaced 

because the optical sensor on the ground can only observe 

the subject at night and not when the weather is terrible. The 

irregularly sampled light curve of KIZUNA was observed 

on the ground when the abnormal rotation occurred. 

2. RELATED WORK 

2.1. Anomaly Detection of Satellites 

There are existing technologies that utilize a variety of 

techniques ranging from statistical methods to machine 

learning and deep learning. In particular, machine learning 

and deep learning have made remarkable progress in recent 

years, and applied research using machine learning and deep 

learning has been increasing in the anomaly detection of a 

satellite. For example, some studies use telemetry and deep 

learning to conduct anomaly detection of satellites. Sara 

Abdelghafar, Ashraf Darwish, Aboul Ella Hassanien, 

Mohamed Yahia, Afaf Zaghrout (2019) show that Grey 

Wolf Optimization and an Extreme Learning Machine are 

used for the anomaly detection of satellites. However, it 

cannot be applied when telemetry data is unavailable for 

some reason (e.g., malfunction). Therefore, conducting early 

anomaly detection without the telemetry data is crucial. 

Several studies use light curves to estimate the attitude of 

satellites, which differs slightly from our research 

objectives. However, some similarities exist in using a light 

curve: Gregory P Badura, Christopher R Valenta, and Brian 

Gunte r (2022) showed that the CNN model effectively 

estimates the attitude using a light curve. Gregory P. 

Badura, Christopher R. Valenta, Layne Churchill, Douglas 

A. Hope (2022) show the spin stability classification based 

on an irregularly sampled light curve. This is one of the 

closest to our research objectives. This is conducted using 

LSTM AutoEncoder for the classification of spin stability of 

satellites based on irregularly sampled light curves. These 

studies require large amounts of data with labels and unique 

features such as observation error, which limits the 

applicable environment. Nevertheless, these studies are 

slightly different from our objective of the early anomaly 

detection of a satellite using an irregularly sampled light 

curve. We explore a method that does not require a large 

amount of labeled data and unique features such as 

observation error for the early anomaly detection of a 

satellite. 

3. DEEP METRIC LEARNING FOR ANOMALY DETECTION 

In this section, we explain our model based on deep metric 

learning in an unsupervised manner. We state the research 

objectives and then describe the architectural details of our 

model. Specifically, we explain how to acquire segment 

embedding using LSTM, and learn similarity based on 

metric learning using the features acquired by LSTM, the 

triplet loss function, conduct Pseudo-Labeling to segment 

data, and calculate an anomaly score. 

3.1. Problem Statement 

We introduce some main notions used in this paper. The 

description here is more general, assuming a multi-variate 

time series inputs, but includes the case of a univariate time 

series input. We denote a set of a multi-variate time series, 

k-th segment and n input series a time t as  𝑆 = {𝒔𝑝}𝑝=1
𝑁 , 

𝒔𝑘 = (𝒙𝑘1
, 𝒙𝑘2

, 𝒙𝑘𝑒
, ⋯ , 𝒙𝑘𝑇

) ∈ 𝑅𝑛×𝑇  and 𝐱t =

(𝑥𝑡
1, xt

2, ⋯ , 𝑥𝑡
𝑛) ∈ 𝑅𝑛, where T is the length of window size. 

Note that the interval in T do not have to be equally spaced. 

Given a multivariate time series segment  𝒔𝑞 ∈ 𝑅𝑛×𝑇 ,  we 

aim to obtain the anomaly score of 𝒔𝑞 as follows; 

𝑎𝑞 = ∑ TopK(𝐷(𝒔𝑝, 𝒔𝑞))
𝑚

,

𝑘

𝑚=1

 

where p denotes the index for p-th segment (∀𝑝 ∈ [1, 𝑁]), 𝑁 

denotes the number of segments, 𝐷(∙) represents a distance 

measure function, and 𝑇𝑜𝑝𝐾(∙) represents a set of k items 

extracted in order of decreasing distance calculated by 

distance metric function. 

3.2. Raw Segment Representation 

Long Short-Term Memory (LSTM) is one of the most 

commonly used recurrent neural networks for processing 

time series data.  It combines the previous hidden state and 

the current input to generate a new hidden state. Each 

LSTM layer has an architecture consisting of three gates: a 

Forget gate, an Input gate, and an Output gate. By using 

these gates, LSTM can capture both long-term and short-

term dependencies. Specifically, the LSTM architecture is 

as follows. 

𝒇𝒕 = 𝜎(𝑾𝑓[𝒉𝑡−1; 𝒙𝒕] + 𝒃𝑓), (1) 

𝒊𝒕 = 𝜎(𝑾𝒊[𝒉𝑡−1; 𝒙𝑡] + 𝒃𝑖), (2) 

𝒐𝒕 = 𝜎(𝑾𝑜[𝒉𝑡−1; 𝒙𝑡] + 𝒃𝑜), (3) 

𝒄𝒕 = 𝒇𝒕 ∙ 𝒄𝑡−1 +  𝒊𝑡 ∙ tanh(𝑾𝑐[𝒉𝑡−1; 𝒙𝑡] + 𝒃𝑐), (4) 

𝒉𝑡 = 𝒐𝑡 ∙ tanh(𝒄𝑡), (5) 
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where [𝒉𝑡−1: 𝒙𝑡] ∈ 𝑅𝑚+𝑛 is a concatenation of the previous 

hidden state and the input at time t. 𝑾𝑓 , 𝑾𝑖 , 𝑾𝒐, 𝑾𝒄 ∈

𝑅𝑚×(𝑚+𝑛) and 𝒃𝑓 , 𝒃𝑖 , 𝒃𝑜, 𝒃𝑐 ∈ 𝑅𝑚 are learnable parameters. 

In this model, with segments as input, LSTM learns to map 

multivariate time series data to feature space. Then, the 

LSTM's final output 𝒉𝑡 , containing the information of all 

segments, is employed. These LSTM final outputs are fed 

into the linear layer as follows 

𝒔𝑡 = 𝑾𝒔
𝑻𝒉𝑡 + 𝒃, (6) 

This 𝐬t  is adopted as the representation of a segment 

because 𝐬t is considered to encode temporal information. 

3.3. Triplet Loss 

Triplet Loss is a method for learning distances between data 

in the feature space using triples, which are tuples of three 

instances: a positive example, a negative example, and an 

anchor. By embedding the distance between anchors and 

positive examples closer and the distance between negative 

examples and anchors farther, the model trains the feature 

space, representing the similarity between data in terms of 

distance. The model is trained by minimizing the Triplet 

Loss on the training data and can represent the similarity of 

segments in the feature space concerning the distance. We 

use the triplet form, representing the relative similarity of 

segments. (e.g., in the case of class classification, 𝐬a and 𝐬p  

belong to the same class, and 𝐬a and 𝐬n  belong to different 

classes.).The triplet loss is described as follows: 

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = max (0, ‖𝒔𝑎 − 𝒔𝑝‖
1

− ‖𝒔𝑎 − 𝒔𝑛‖1 + 𝑚) , (7) 

where ‖∙‖1 is used for the representation of 𝑙1 norm, and m 

is the margin. Applying the above Triplet Loss to each 

triples allows similar segments to be embedded closer 

together and dissimilar ones farther apart. This allows the 

model to learn similarities that consider temporal 

information in the feature space. 

3.4. Pseudo-Labeling  

There is a labeling technique for data whose labels are 

unknown. Pseudo-labeling is a standard method of adding 

new labels to unlabeled data based on machine learning 

predictions. By using pseudo-labeling, it is possible to label 

many unlabeled data to increase the training data. Our 

model used pseudo-labeling based on Euclid distance, 

designed to learn the normal state from segments. Given 

two normal time series segments 𝒔 = (𝒙1, 𝒙2 ⋯ , 𝒙𝑇), 𝒔′ =
(𝒙1

′ , 𝒙2
′ , ⋯ , 𝒙𝑇

′ ),their Euclid distance can be calculated with: 

𝑑(𝒔, 𝒔′) = ∑‖𝒙𝑡 − 𝒙𝑡
′ ‖

𝑇

𝑡=0

, 𝒔, 𝒔′ ∈ 𝑆, 𝒔 ≠ 𝒔′, (8) 

where 𝑆 = {𝒔𝑖}𝑖=1
𝑁  is a set of segments. We can obtain the 

Euclidian distance vector between an i-th segment and all 

remaining segments from the above calculation. In order to 

take advantage of supervised learning, positive and negative 

segments are obtained from the top k similarities calculated 

based on the distance measure function entered with 𝒔𝑖  as 

the query is defined as the similarity ranks in order of 

increasing similarity. Here, we denote k as the number of 

nearest neighbors we will extract as positive segments. Let 

𝑆𝑝𝑜𝑠
𝑖  denote the set of the extracted top k segments for an i-

th segment, and the remaining segments 𝑆/𝑆𝑝𝑜𝑠
𝑖  are treated 

as negative segments. This process is performed across all 

segments to create a dataset with labels. Our model can be 

trained in a supervised manner using the created dataset. 

Note that our model leverages labels of this dataset in only a 

training phase. 

3.5. Anomaly Score  

There are various methods for calculating an anomaly score. 

We introduce a distance-based anomaly score calculation. 

This method is versatile and can be used in various cases. 

Given the segment representation of a light curve  𝐬 , the 

calculation of the anomaly score of an i-th segment is as 

follows: 

𝑎𝑖 =  ∑ TopK
𝑗

(‖𝒔𝑖 − 𝒔𝑗‖
1

)
𝑚

𝑘
𝑚=1 , 𝑖 ≠ 𝑗, ∀𝑗 ∈ [1, 𝑛], (9)

where n denotes the number of segments. Using the segment 

representation, we can calculate an anomaly score 

considering temporal information.  

4. EXPERIMENT 

4.1. Dataset 

The data used in this experiment are the light curve of 

KIZUNA observed from optical sensors on the ground from 

January to February 2019. Figure 1 shows the irregularly 

sampled light curve of KIZUNA. One of the characteristics 

of a light curve is unequally spaced because the optical 

sensor on the ground can only observe the subject at night 

and not when the weather is terrible. In this experiment, 

since KIZUNA behaved abnormally on February 8, 2019, 

we define before and after February 8, 2019, as a standard 

and abnormal condition, respectively.  

 

Figure 1. This figure shows the optical sensor observation 

data. 



Asia Pacific Conference of the Prognostics and Health Management Society 2023 

4 

4.2. Parameter Setting 

Our model has 5 hyper-parameters. We experimented with 

the hidden size of LSTM, the size of segment embedding, 

and window size of a segment set to 64. For the margin in 

triplet loss, we set it to 1. We set the number of nearest 

neighbors to 1000, which means the number of positive 

segments at each segment. Our model is trained on a server 

with NVIDIA GTX 2080 graphics cards. 

4.3. Evaluation 

In this experiment, the data before January 20 are trained as 

standard data. The anomaly scores after the above date are 

calculated; the period after the date includes both standard 

and suspected anomalous intervals. Figure 2 shows the 

plotting results. The anomaly scores calculated by the 

proposed method showed a clear upward trend in the 

anomaly scores when anomalies were suspected of having 

occurred. This result indicates the effectiveness of the 

proposed method in detecting anomalies. Furthermore, there 

is an increase in the trend of anomaly scores after January 

24. This result suggests that the model could capture the 

anomaly before recognizing the abnormal behavior. 

 

 

Figure 2. This figure shows the anomaly score. The green 

shade represents the interval of the normal state and the red 

shade represents the interval of the anomaly state of 

KIZUNA. 

 

4.4. Explore The Segment Embedding 

We explored the segment embedding learned by the model. 

Specifically, we used the t-SNE, which is found by Van der 

Maaten, Laurens, and Geoffrey Hinton (2008), to conduct 

dimensionality reduction of feature space. t-SNE is a widely 

used dimensionality reduction method characterized by its 

ability to project high-dimensional feature onto low-

dimensional feature through a nonlinear transformation 

while retaining the characteristics of high-dimensional 

feature. Figure 3 illustrates how the segment embedding 

changed with the value of the anomaly score. This figure 

plots anomaly score values divided into intervals in 

increments of 1, with the colors becoming darker as the 

values increase. This result shows that relatively high and 

low anomaly scores form different clusters in the feature 

space, indicating that our model is likely to have captured 

the anomaly as a different state compared to the normal 

state. Also, the segment embedding is continuously 

changing, indicating that our model will likely capture 

continuous states of KIZUNA. This result indicates that our 

model can capture, such as between anomaly and routine, 

and detect the failure sign that would not be possible using 

telemetry data. 

 
Figure 3. The t-SNE visualization of the learned embedding. 

The clear separation by the coloring indicates that the 

embedding represent continuous state changes of KIZUNA 

 

5. CONCLUSION 

We propose a new method for the early anomaly detection 

of a satellite from an irregularly sampled light curve. Given 

a light curve series segment, our model performs pseudo-

labeling based on Euclid distance to create a training dataset 

and employ LSTM units to encode the temporal dynamics 

of light curve segments. Subsequently, the feature space 

embedding was learned by employing triplet loss. Finally, 

the distance of embedding on the feature space was 

employed to compute the anomaly score of a satellite. 

Empirical studies on the light curve dataset demonstrated 

the effectiveness and efficiency of our model. The future 

works include improvement in the accuracy of early 

anomaly detection. 

 

REFERENCES 

Dongjin Song, Ning Xia, Wei Cheng, Haifeng Chen, 

Dacheng Tao (2018). Deep r-th Root of Rank 

Supervised Joint Binary Embedding for Multivariate 

Time Series Retrieval. KDD 2018. 

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. 

Bougares, H. Schwenk, and Y. Bengio. (2014). 

Learning phrase representations using RNN encoder-

decoder for statistical machine translation. 

arXiv:1406.1078 . 

Sepp H. and Jürgen S. (1997). Long short-term memory. 

Neural Computation 9, 8 , 1735–1780.1 

Gregory P Badura, Christopher R Valenta, and Brian Gunte 

r (2022). Convolutional neural networks for inference 



Asia Pacific Conference of the Prognostics and Health Management Society 2023 

5 

of space object attitude status. The Journal of the 

Astronautical Sciences, pages 1–34, 2022. 

Gregory P. Badura, Christopher R. Valenta, Layne 

Churchill, Douglas A. Hope (2022).   Recurrent Neural 

Network Autoencoders for Spin Stability Classification 

of Irregularly Sampled Light Curves. (AMOS) – 

www.amostech.com 

Phan Dao, Kristen Haynes, Stephen Gregory, Jeffrey 

Hollon, Tamara Payne, and Kimberly Kinateder (2019). 

Machine classification and sub-classification pipeline 

for geo light curves. In Proceedings of the Advanced 

Maui Optical and Space Surveillance Technologies 

Conference, 2019. 

Sara Abdelghafar, Ashraf Darwish, Aboul Ella Hassanien, 

Mohamed Yahia, Afaf Zaghrout (2019). Anomaly 

detection of satellite telemetry based on optimized 

extreme learning machine. Journal of Space Safety 

Engineering December 2019, Pages 291-298 

Schroff, Kalenichenko, and Philbin (2015). “FaceNet: A 

Unified Embedding for Face Recognition and 

Clustering.” CVPR 2015. 

Van der Maaten, Laurens, and Geoffrey Hinton (2008). 

"Visualizing data using t-SNE." Journal of machine 

learning research 9.11. 

 


