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ABSTRACT 

Successful aircraft predictive maintenance relies on the 

accurate prediction of major aircraft component failures for 

operators to schedule and carry out maintenance operations 

before failure actually happens. In this paper, we share 

important lessons learned from our development of 

prognostics alerts using full flight sensor data, including 

various challenges of using big data, data quality issues, 

failure identification for data labeling, engineering-driven vs. 

data-driven methods, and aggregating alerts into actionable 

alerts. We also provide recommendations based on our 

experience with prognostic alerts developed and deployed for 

many airline operators. 

1. INTRODUCTION 

Aircraft predictive maintenance improves safety compliance, 

increases component life, reduces repair cost, and avoids 

schedule interruption. Modern aircraft are often equipped 

with thousands of sensors, and full flight sensor data with 

thousands of parameters are recorded for each flight at an 

average rate of 1Hz. Recent improvements on the 

accessibility to this sensor data and the affordability of big-

data machine learning platforms have enabled data scientists 

to build prognostic models for predicting component failures 

at the right time with reasonable accuracy so that operators 

can carry out maintenance actions without excessive burdens. 

However, aircraft are designed to be reliable and major 

components shall not and do not fail frequently. Therefore, it 

is often difficult, and sometimes infeasible, to directly 

employ state-of-the-art big-data machine learning 

approaches, as these methods require a large number of 

training cases. To address this challenge, data scientists often 

explore and incorporate deep physical and engineering 

knowledge when building prognostic models. 

In this paper, we describe our experience in developing 

prognostic models from large volume of flight sensor data, 

discuss challenges and provide recommendations for best 

practices. Figure 1 shows a general flow for our prognostic 

model development process. Descriptive and diagnostic 

analytics, though not a focus in this paper, also benefit from 

the data acquisition and processing steps. In addition, we 

discuss data quality issues whenever appropriate [Lukens, 

Rousis, Thomas, Baer, Lujan, Smith, (2022)]. 

 

Figure 1 A prognostic model development process 

2. FLIGHT SENSOR DATA 

Aircraft are equipped with many sensors for monitoring 

operating conditions, such as temperature, pressure, valve 

position, power, rotation speed, and airflow rate. These 

sensed conditions, together with some control commands and 

calculated aircraft states, called “parameters” below, are 

recorded as flight sensor data during the whole flight or 

maintenance, and downloaded from the aircraft in real time 

or post-flight. Raw sensor data in compact binary format need 

to be translated into engineering unit data (e.g., numbers in 

units like foot or ampere) before analysis. Different devices 

First Author et al. This is an open-access article distributed under the 

terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 

4th Asia Pacific Conference of the Prognostics and Health Management,
Tokyo, Japan, September 11 – 14, 2023 OS04-07

mailto:changzhou.wang@boeing.com
mailto:darren.puigh@boeing.com
mailto:audrey.z.lei@boeing.com
mailto:wei.guo7@boeing.com
mailto:jun.yuan@boeing.com
mailto:mark.a.mazarek@boeing.com


Asia Pacific Conference of the Prognostics and Health Management Society 2023 

2 

and systems are used in the data sensing, transmission, 

recording, and translation processes. Each step in this 

pipeline may introduce different types of data quality issues. 

We recommend creating and updating a checklist for all 

known issues, developing reusable code to check each known 

issue upon obtaining new data, and combining multiple 

independent sources to improve confidence on the quality 

check results. In addition, some quality issues only occur in 

a few flights, so it is important to check every flight instead 

of a random sample of flights. 

The following is a list of common quality issues we have 

encountered: 

• Data coverage. All flights of some airplanes might be 

missing (from a dataset that intends to include these 

airplanes); some flights might be missing for an airplane; 

some flights might be duplicated; and some parameters 

might be missing in some flights. For recurring data feeds, 

there are often delays for data arrival, and flights might 

come out of temporal order. 

• Flight metadata. Departure and arrival airports are often 

important, but may be missing or incorrect due to manual 

input. Units for the same parameter can vary from across 

flights due to configuration changes. Parameter names 

often change in a similar way. Dual channel parameters 

may be merged before recording. Parameters may be added 

or removed over time for different flights in the dataset. 

 

Figure 2 Different time fields are not synchronized.  

• Timestamp. Different time fields in the raw recording may 

have different sampling rate and starting time offsets. For 

example, in Figure 2, the year, month and day fields are 

recorded once every minute while the other three fields are 

recorded at 1Hz, and the recording time (DeltaTime) is off 

by at least 0.1 second. Simple carryforward or nearest 

neighbor time filling and interpolation will cause time 

jump back by almost 24 hours (from 2020/3/5 23:59:59 to 

2020/3/5 00:00:00). In addition, glitches in recording can 

cause time jumping, freezing (i.e., not changing), or 

rewinding. Translation errors may shift multiple time 

segments to overlap each other. Multiple sets of 

timestamps (e.g., relative time and absolute time) might be 

available but inconsistent to each other. Timestamps from 

                                                           
1 MEL, Minimum Equipment List, is intended to permit aircraft operation 

with some inoperative items for a short period before repair can be done. 

different sources may use different time zones and text 

formats (if data is not provided in binary format). 

• Value. Parameter values can be out of range. Special values 

(e.g., 999) may be used to indicate invalid values. 

Parameter values might change too quickly or slowly (e.g., 

altitude change during Climb). Parameter values might be 

stale despite continuous operation condition changes. 

Glitches in recording might cause value dropout at the 

same time for a set of related parameters. Health flags 

might exist for every value in the raw data but become lost 

during translation. Parameter values might be valid only 

when a related mode/control parameter has a special value. 

3. FAILURE IDENTIFICATION 

To build an accurate failure prediction model and validate the 

model from historical data, we need complete and accurate 

failure information. Unfortunately, 100% coverage and 

accuracy are often very hard to achieve. In practice, we need 

to collect information from many diverse data sources with 

different levels of data qualities [Hodkiewicz, Ho (2016)], 

often incomplete, optional or in free text, and use multiple 

corroborative evidences to confirm failures and determine 

failure position and time. 

 

 

Figure 3 Occurrences of 35 (out of 166 total) different 

position text. Only L1, L2, R1 and R2 are expected. 

• Determine component life on the aircraft: aircraft (tail), 

installation and removal time, part number, serial number, 

and position (when there are multiple installations of a 

component in different positions on the same aircraft). 

Part and serial numbers are often mandatory fields with 

occasional typos. Position is often optional and free-text 

with great variations (see Figure 3 as an example). Flight 

deck effect and maintenance messages (generated by on-

board condition monitoring systems), complaints, MEL1 

Once an item in the MEL list is failed, operator is required to “put it on 
MEL”. Hence, the MEL record indicates the failure time, and associate 

comment provides additional information such as position of the component. 
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comments, removal reason, maintenance action and shop 

findings might often include indication of position; but it 

is non-trivial to link related records for the same 

component, extract position info and resolve conflicts. 

• Determine failure time. If the first MEL record can be 

found for the removal, it likely provides the failure time.  

Maintenance messages and complaints might provide 

alternative or additional evidences. When the failing flight 

is available, it can be more reliable to detect failure from 

the sensor data than relying on human input. More 

importantly, not all removals are due to failures. 

Scheduled removals, upgrades, cleaning, part swapping or 

robbery are examples. Removed parts might be shown as 

no fault found in the shop, and may be excluded from 

failing parts. 

• Determine failure mode, likely from shop findings and 

teardown reports. However, it might be very difficult to 

determine the sequence of failures and hence the main 

failure mode, despite what is written in the report. 

Failures or maintenance messages of related components 

might provide hint. 

• Find behavior changing events. Changes in on-board 

control software may change the characteristics of 

relevant sensor data. Failure and replacement of related 

components (e.g., a temperature sensor providing 

feedback loop for the control of the target component) 

may also change the behavior of the component. 

Extended grounding periods, such as those due to 

COVID19, can also modify the behavior (while the sensor 

data is often not available during ground sustainment). 

4. MODEL DEVELOPMENT 

Once the sensor data is cleaned and failure time is accurately 

determined, it would appear straightforward to apply a 

cutting-edge machine learning algorithm to build a prediction 

model [Darrah, Lovberg, Frank, Quinones-Gruiero, Biswas, 

(2022); Mitici, de Pater, Barros, Zeng, (2023)]. 

Unfortunately, current machine learning methods, such as 

deep recurrent neural network or transformer-based attention 

networks, cannot be directly applied in many practical cases. 

The history of a single component often spans over hundreds 

to thousands of flights, each containing tens of thousands of 

time steps. Successful prediction of failures often depends on 

signals in past flights, or trends over many historic flights or 

baseline conditions when the component is first installed.  

On the other hand, today’s sequence machine learning 

methods cannot handle very long sequences. Indeed even the 

best Transformer based algorithm cannot handle more than a 

few thousands time steps [West (2023)]. As a result, a 

practical approach often takes two steps: (1) extract 

summarized features from each flight, and (2) predict failure 

from the history of flights.  

Engineering knowledge often provides a good starting point 

for identifying interesting events within each flight and 

extracting features according to these events. This will 

greatly reduce the number of parameters and the volume of 

data. Usually, most initial hypotheses hold up only on sample 

flights, but do not survive after being tested on all flights. As 

a result, it pays off quickly to have a high-level language (see 

Figure 4 as an example) or API to capture, test and refine 

engineering hypotheses on many flights. In addition, it is 

often difficult for engineers to provide exact thresholds or 

window sizes, especially when there are a large number of 

combinations, while a machine learning method may be used 

to select the best combination that best differentiates normal 

vs. near failure flights. 

 

Figure 4. A high-level language for engineering-driven 

feature extraction 

 

Due to personal experience, engineering knowledge is 

usually biased and limited to a small scope, and may prevent 

discovery of reliable prediction logic. A data driven approach 

instead starts with all available data. For example, we can 

build a normal behavior model of a component from 

historical data, and use deviations or anomalies in each flight 

to predict failures [Yuan (2022)]. Here, statistical analysis 

and machine learning methods can be used to select relevant 

parameters, interesting events, and appropriate aggregation 

features in building the normal behavior model. 

Without engineering guidance, the data-driven methods 

might become infeasible due to the required computing 

resources. Indeed, engineering input is key to select the target 

parameters to model the normal behavior.  

Once summarized features are extracted from each flight, an 

appropriate machine learning method can be applied directly 

as there are usually only a few hundreds of sequences, each 

with up to a few thousands of flights (time steps). Since the 

number of failure cases are often small, deep learning 

methods might not work well. Instead, we can again leverage 

engineering knowledge to augment the data with temporal 

aggregation across flights, and then apply tree-based machine 

learning methods (e.g., Random Forest or XGBoost). 

Finally, due to the small number of failure cases, it is 

important to simplify final models to reduce over-fitting, and 

improve interpretability. When the prognostic models are 

aligned with engineering knowledge, it is more robust to 
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handle unseen failure paths since the underlying physics are 

not changed. 

5. ALERT GENERATION AND FEEDBACK LOOP 

Prognostic models usually predict for each flight about how 

likely the component will fail soon, e.g., whether it will fail 

within 30 days from each given flight. However, the per-

flight prediction result is often not stable, and can flip 

between positive (will fail) and negative (will not fail) in 

consecutive flights. 

Based on the per-flight predictions, airline customers may be 

alerted to take inspection and replace the component when 

inspection results are positive (e.g., damage found). When the 

number of positive predictions is large, it is impractical for 

airlines to take actions on each positive flight. Instead, per-

flight predictions shall be aggregated into actionable alerts. 

Ideally, for each and every failure, a single alert is issued, and 

the inspections confirms the damage before the actual failure. 

In practice, some alerts are false alarms, inspection results 

might be negative, and failure may happen despite of 

negative inspection result. 

From the customer point of view, the performance of a 

prognostic model is not the per-flight metrics, but rather on 

the actionable alerts and inspection actions: how many 

failures have been captured? How many failures are missed 

without alert? How many failures are missed with negative 

inspection results? 

Ideally, the end-to-end prognostic model shall use these 

metrics as the optimization objective. This might be done 

using a hyper-parameter tuning framework, e.g., Liaw, 

Liang, Nishihara, Moritz, Gonzalez, Stoica (2018). During 

model development, there is no inspection due to generated 

alerts on historical data. This might be simulated with a 

probability model on inspection actions and inspection 

results. As a result, the hyper-parameter tuning framework 

shall be flexible enough to take the simulation function as the 

tuning objective. 

6. CONCLUSION 

In this paper, we discussed key elements and lessons learned 

in our research and deployment experience on component 

failure prediction. Challenges like very large data volume, 

very long time sequence, and limited number of failures make 

it difficult to take a holistic approach to build a single 

prognostic model using the actionable alert performance as 

the optimization objective. Encouraged by the recent success 

of ChatGPT, we are looking forward for technology 

advancements that allow us to build Generative AI models 

for flight sensor data and fine-tune them for different 

components’ failure prediction. 
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