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ABSTRACT 

Accurately predicting the remaining useful life (RUL) of 
industrial machinery is crucial for ensuring their reliability 
and safety. Prognostic methods that rely on Bayesian 
inference, such as Bayesian method (BM), Kalman and 
Particle filter (KF, PF), have been extensively studied for the 
RUL prognosis. However, these algorithms can be affected 
by noise when training data is limited, and the uncertainty 
associated with empirical models that are used in place of 
expensive physics models. As a result, this can lead to 
significant prediction errors or even infeasible RUL 
prediction in some cases. To overcome this challenge, three 
different approaches are proposed to guide the Bayesian 
framework by incorporating low-fidelity physical 
information. The proposed approaches embed inequality 
constraints to reduce sensitivity to local observations and 
achieve robust prediction. To determine an appropriate 
approach and its advantageous features, performance is 
evaluated by both numerical example and real case study for 
drone motor degradation. 

1. INTRODUCTION 

The prognostic algorithms for RUL prediction are generally 
divided into two categories: data-driven and model-based 
approaches (Kim et al., 2021a; Sutharssan et al., 2015). Data-
driven approaches use historical datasets to identify 
degradation patterns using artificial intelligence (AI) 
methods but require a huge amount of training data. 
Insufficient training data may lead to poor accuracy and large 
training uncertainty to make proper decision-making. In 
contrast, model-based approaches use physical model that 
describes the machinery degradation behavior and enables 
more accurate and long-term prediction. Bayesian inference-

based prognostic algorithms such as Bayesian method (BM) 
(An et al., 2012), Kalman filter (KF) (Lim and Mba, 2015) 
and Particle filter (PF) (Kim et al., 2021b) are commonly 
used to estimate the model parameters. 

In practice, however, it is challenging to establish high-
fidelity physics model for complex machinery system as the 
degradation process can involve various components and 
failure mechanisms. As an alternative, simple but effective 
mathematical models such as a single exponential model 
(Kim et al., 2022b; Wang et al., 2021), polynomial model 
(Kim et al., 2017) or dual-exponential model (Chen et al., 
2020) are widely used in model-based approaches. However, 
traditional Bayesian inference-based algorithms present 
several challenges when used with these models, leading to 
inaccurate predictions of RUL. The first issue is that the 
simple mathematical models used may not be able to 
accurately capture the complexities of non-linear degradation 
processes, resulting in significant prediction errors. 
Additionally, inaccurate, or insufficient measurements can 
produce unexpected results and increase prediction 
uncertainty. Our research has revealed that these challenges 
have not been thoroughly addressed in existing prognostic 
algorithms that use traditional Bayesian frameworks. 

To address above issues, we have developed three approaches 
that incorporate physical constraints into conventional 
Bayesian methods. These approaches aim to reduce the 
sensitivity of prognostic algorithms to local, noisy 
measurements and improve RUL prediction accuracy, 
particularly in the early stages of degradation. Moreover, we 
have also included multiple noise perturbations at the same 
noise level in our simulated degradation model to properly 
quantify prediction uncertainty. 

2. BAYESIAN METHOD 

In Bayes’ theorem, the knowledge of a system can be 
improved with additional observation of the system. In BM, 
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the joint posterior PDF of degradation model parameters at 
the current time is obtained by a single equation, in which all 
the likelihood of measured data are multiplied. More 
specifically, let 𝜽  be the vector of unknown model 
parameters and 𝒚!:# is the vector of observed data until time 
𝑘. The joint posterior PDF is obtained by multiplying the 
prior PDF with the likelihood as  

𝑝(𝜽|𝒚!:#) ∝= 𝑝(𝒚!:#|𝜽)𝑝(𝜽)   (1) 

𝑝(𝒚!:#|𝜽) = (σ$)%#/$𝑒𝑥𝑝 ,− !
$'!

(𝒚!:# − 𝒚.!:#)((𝒚!:# − 𝒚.!:#)/ (2) 

where 𝑝(𝜽) is the prior PDF of parameters, 𝑝(𝒚!:#|𝜽) is the 
multiplied likelihood of observed data conditional on the 
given parameter value 𝜽 as Eq. (2) where 𝒚(!:# is the model 
prediction. 
After obtaining the expression of posterior PDF by Eq. (1), N 
samples of parameters are drawn using a sampling method, 
with the Markov-chain Monte Carlo (MCMC) algorithm 
being used in this study due to its effectiveness in producing 
complex posterior distributions. Fig. 1 shows the sampling 
process using the Metropolis-Hasting (M-H) algorithm, 
which is a typical MCMC method. Initial settings such as the 
initial value for parameters 𝜽𝟎, the initial prior distribution 
𝑝(𝜽) and the weight vector 𝒘 for the sampling interval of the 
proposal distribution 𝑔(𝜽∗,𝜽&'!)  which is the uniform 
distribution are set by the user. A new sample 𝜽∗ is drawn 
from the proposal distribution and the selection is proceeded 
based on the acceptance criterion as 

𝑄1𝜽)%!, 𝛉∗4 = 𝒎𝒊𝒏81, +,𝜽∗-𝒚.
+/𝜽)%!0𝒚1:   (3) 

where proposal distribution is removed since it is a symmetric 
distribution. The new sample is accepted if its PDF value is 
greater than the old sample's. Otherwise, acceptance depends 
on the ratio of PDF values and a random sample u. With 
sufficient iterations, the sampling results approximate the 
posterior distribution. More detailed explanations are given 
in (An et al., 2010; Andrieu and Jordan, 2003; Kim Dawn An 
Joo-Ho Choi, n.d.). 

BM process  

� Initial settings 

: Set initial value 𝜽𝟎, initial prior distribution 𝑝(𝜽), weight 𝒘 

� MH algorithm 

: For 𝑖 = 1, … , 𝑁 

− Generate new sample from proposal distribution 

𝜽∗	~	𝑔(𝜽∗/𝜽#$%) = 𝑈(𝜽#$% − 𝒘, 𝜽#$% + 𝒘) 

− Generate acceptance sample 𝑢~𝑈(0,1) 

− If 𝑢 < 𝑄(𝜽#$%, 𝜽∗) 
       𝛉& = 𝛉∗ 
Else 
       𝜽# = 𝜽#$% 
Figure 1. Process of Bayesian method. 

2.1. Physical constraints 

This study utilizes the low-fidelity physical information to 
impose physical constraints in the prognostic algorithms 
outlined in previous sections. Low-fidelity physical 
information refers to the lowest level of physical information 
available, which crudely represents parameter behavior 
during degradation (Kim et al., 2022a). To clarify, physical 
constraints are exemplified through a polynomial degradation 
model, which will be discussed in detail in the numerical 
study: 

𝑥# = 𝐶 + 𝛽!𝑡#( + 𝛽(𝑡#)         (4) 
where 𝜷 = [𝛽!, 𝛽(] is model parameters, 𝐶 is constant initial 
value and 𝑡#  is time/cycles. In case of degradation, it is 
widely known that the damage state 𝑥#  should inherently 
increase over time (i.e. 𝑑𝑥/𝑑𝑡 ≥ 0 ) and the slope of 
degradation is a positive trend (i.e. a non-linearly increasing 
trend, 𝑑𝑥(/𝑑𝑡( ≥ 0 ). This two information is defined as 
monotonicity (Mon) and curvature (Cur), respectively. In the 
Section 3, the methods to utilize the two physical constraints 
in the prognostic algorithms following the Bayesian 
inference are addressed. 

3. METHODOLOGY 

This section outlines our methodology for incorporating 
physical constraints into the BM algorithm to facilitate robust 
prognosis in the face of severe noise and limited data (i.e. 
early prediction). As depicted in Fig. 2, three distinct 
encoding methods are proposed to guide the prognostic 
algorithms with physical constraints. Additionally, we 
introduce a prognosis performance metric that quantifies data 
uncertainty resulting from random noise. 

 
Figure 2. The proposed methodology for prognostics guided 

by physical constraints. 

3.1. Method 1: initial prior constraints 

A simple and direct approach to embed constraints in 
Bayesian updating is to set the boundaries of the initial prior 
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distribution. Specifically, with the polynomial damage model, 
there may be several inequality constraints ( 𝑎* ≤ 𝛽* ≤
𝑏* ,				𝑗 = 1,2) on the true model parameters 𝜷𝒕𝒓𝒖𝒆. In BM, the 
initial prior distribution is assumed to be uniform and will be 
truncated according to the boundaries, which will impact the 
resulting posterior distribution. The constrained posterior 
PDF 𝑝/(𝜽|𝒚!:#)	is expressed as Eq. (5) and will sample from 
truncated 𝑄/(𝜽&'!, 𝛉∗). 

𝑝/(𝜽|𝒚!:#) ∝ 𝑝(𝒚!:#|𝜽)𝑝/(𝜽) where 𝑝/E𝜃*G~𝑈E𝑎* , 𝑏*G    (5) 

The detailed information about obtaining the prior 
boundaries [𝒂, 𝒃] is addressed in numerical case study.  

3.2. Method 2: acceptance criteria constraints 

To embed physical constraints in Bayesian updating, another 
approach involves setting additional acceptance criteria for 
new samples generated from the proposal distribution. This 
is done by calculating the Mon and Cur values of the new 
sample not just within the interpolation region but also in the 
extrapolation region. Parameters that do not result in a 
monotonic increase in degradation in the extrapolation region 
are eliminated. 

The process is explained via Fig. 3. As shown in the figure, 
the new model parameter samples 𝜷∗ = [𝛃𝟏∗ , 𝜷𝟐∗ ] at 9 cycles 
are obtained with measurements using BM, in which the 
future state and uncertainty is predicted to prediction points 
𝑇2  by red lines. The 𝑇2  include both the interpolation and 
extrapolation regions and should be defined in prior with 
sufficient prediction range. Then, the vectors of Mon (𝒚(𝒎) 
and Cur (𝒚(𝒄) of predicted health state are calculated with a 
vector of cycles from initial point to the prediction points as 

;
𝒚.𝒎 = 𝑑𝑥/𝑑𝑡	 = 2𝜷𝟏∗𝒕𝑻𝒑 + 3𝜷𝟐

∗𝒕𝑻𝒑
𝟐

𝒚.𝒄 = 𝑑𝑥$/𝑑𝑡$ 	= 2𝜷𝟏∗ + 6𝜷𝟐∗𝒕𝑻𝒑
 where 𝒕𝑻𝒑 = F1,2,… , 𝑇+I   (6) 

The new sample is accepted not only based on the ratio of 
PDF values but also when both 𝒚(𝒎 and 𝒚(𝒄 are positive (𝒚(𝒎 ≥
𝟎	&	𝒚(𝒄 ≥ 𝟎).  

 
Figure 3. Constraint calculation with prediction points 

3.3. Method 3: likelihood function constraints 

Finally, in method 3, the physical constraints are imposed in 
the form of penalties in the cost function, i.e. likelihood 

function. Similarly, the physical constraint term is violated 
whenever the monotonicity and the curvature are negative. In 
this method, the estimation process of prognostic algorithms 
is interpreted as a constrained optimization problem as shown 
in the below form: 

Minimize					𝑀𝑆𝐸 = ∑ (𝑦) − 𝑦U))7
)8!

$																																																						
Subject	to		 ∑ 𝑚𝑎𝑥F0,−𝑦U9,#I

(#
#8! < 0	&	∑ 𝑚𝑎𝑥F0,−𝑦U;,#I

(#
#8! < 0

 

(7) 

To solve the inequality constrained optimization problem, the 
constrained optimization formulation can be approximated 
into an unconstrained problem by using a Lagrange multiplier 
method. As a result, Eq. (7) is converted into the following 
cost function: 

𝑐𝑜𝑠𝑡 = 𝑀𝑆𝐸 + λ!∑ 𝑚𝑎𝑥F0,−𝑦U9,#I
(#
#8! + λ$∑ 𝑚𝑎𝑥F0,−𝑦U;,#I

(#
#8!  	

										= 𝑀𝑆𝐸 + λ!𝑝𝑒𝑛𝑎𝑙𝑡𝑦! + λ$𝑝𝑒𝑛𝑎𝑙𝑡𝑦$          (8) 

where λ! and λ( are the Lagrange multiplier for the physical 
constraints penalties. The form of Eq. (8) can be embedded 
in calculation of the likelihood for BM as addressed in the 
following equation: 

𝑝;,<=(𝑦|θ∗) = 1σ√2π4
%#
𝑒𝑥𝑝 k− l !

$'!
(𝑦 − 𝑦U)((𝑦 − 𝑦U#) +

λ!𝑝𝑒𝑛𝑎𝑙𝑡𝑦! + λ$𝑝𝑒𝑛𝑎𝑙𝑡𝑦$mn              (9) 

The physical constraint acts as a role of a regularization term 
and reduces the complexity of the degradation model due to 
overfitting to noisy data. In result, the physical constraint 
term prevents overfitting from local noisy data and ensures 
reasonable prediction based on physical knowledge. 

4. PROGNOSIS PERFORMANCE METRICS 

4.1. Prediction accuracy 

The average RUL prediction accuracy from the noise 
randomness is evaluated by mean absolute error (MAE) 
defined as (Son et al., 2016)  
𝑀𝐴𝐸# =

!
=
∑ p𝑅𝑈𝐿t9(𝜽𝒌) − 𝑅𝑈𝐿(?@A(𝜽𝒌)p=
)8!          (10) 

where 𝑅𝑈𝐿S5 represents the median value of predicted RUL 
by estimated model parameters using measured data until 
time 𝑘 , and 𝑅𝑈𝐿6789  is true RUL value. In addition, the 
performance of the prognostic algorithm depends not only on 
the level of random noise, but also the amount of measured 
data for model parameter estimation. Thus, the performance 
comparison with the physical constrained BM will be 
conducted under different time cycle 𝑘 to predict RUL. 

4.2. Prediction uncertainty 

From the perspective of decision makers, in addition to 
prediction error, it is important to quantify the uncertainty of 
the prediction and it can be assessed by the C.I. of the RUL 
prediction (Gebraeel N et al., 2023). However, owing to noise 
randomness, the uncertainty bound can also have uncertainty 
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due to noise randomness. To quantify algorithm consistency, 
RUL predictions for M datasets are stored in a table shown in 
Fig. 4, and the 90% C.I. and median are calculated. RUL 
curve uncertainty is represented with a shaded surface in Fig. 
4. This approach was studied in the previous study by the 
authors (Kim et al., 2022a). 

 
Figure 4. Data uncertainty quantification in RUL curve 

5. NUMERICAL STUDY 

In this section, the proposed methods are applied via a 
simulation data of non-linear degradation, in which the Eq. 
(4) with the model parameter 𝜷 is used to create degradation 
data added by random noise 𝜖  that follows Gaussian 
distribution with standard deviation σ: 

𝑥# = 𝐶 + 𝛽!𝑡#$ + 𝛽$𝑡#B and 𝑦# = 𝑥# + 𝜖 with 𝜖~𝑁(0, σ)       (11) 

where true value of 𝛃𝟏 and 𝛃𝟐 is 0.05 and 0.02, respectively. 
To consider moderate and severe noisy condition, the σ value 
is set 10 or 50. Moreover, in this study, 50 datasets are 
generated with random noise to compare prediction 
performance between general Bayesian framework and our 
proposed method. 

5.1. Prediction results 

To apply physical constraints by method 1, first, we need to 
obtain the range of initial prior distribution range for the 
parameters. Unlike the most of related studies that provide 
prior constraints by expert knowledge, this paper identifies 
the prior constraint range by the combination of monotonicity 
and curvature grid. To obtain grid, a sufficient range that 
cover true parameter value is set in prior. In this study, it is 
set between -0.1 to 0.1 for both 𝛽! and 𝛽(. Then at each cycle, 
the Mon and Cur values are calculated over the grid and 
define as 1 if only both Mon and Cur are positive, otherwise 
as 0. The Fig. 5 shows the result over initial cycle to 
prediction point 𝑇2  which is set 50 cycles in this study. 
Finally, the overlapping area over cycles is used for 
constraint prior range as 

𝑓(𝛽!)~𝑈(0, 	0.1)	&	𝑓(𝛽$)~𝑈(0, 	0.1) 

 
Figure 5. Initial constraint prior range calculation 

 
BM and the proposed constraint methods were used to predict 
future degradation based on data up to 9 cycles, as shown in 
Fig. 6(a) and (b) for datasets with varying levels of noise. The 
red dotted and dashed lines refer to predicted 90% C.I. and 
median using black dotted data. The original BM performed 
poorly due to inaccurate estimation of the posterior state 
caused by the noisy data, resulting in violation of the 
monotonicity principle and a decreasing trend in time for the 
median of the predicted distribution. In contrast, the proposed 
methods produced satisfactory predictions with a median of 
the predicted distribution that is both monotonically 
increasing and close to the true degradation, with reduced 
uncertainty.  

Even in the large noise dataset, the proposed methods shows 
great performance compared to the original BM without 
constraints. Thus, constraining the conventional Bayesian 
framework with physical constraints avoids large prediction 
errors caused by local noisy data and predicts the degradation 
trajectory monotonically even under large noise condition. 
Even if the median prediction from the large noise level 
seems more accurate than that of the small noise level, this is 
by accident due to the realization of noise. 

 
(a) 

 
(b) 

Figure 6. Prediction using BM and proposed methods: (a) 
under small-level of noise (b) large-level of noise 

5.2. Prediction performance analysis 

In this section, the two metrics are used to compare prediction 
performance of conventional BM with our proposed methods. 
Fig. 7 shows the MAE of 50 random datasets at different 
cycles. The column shows the MAE by the prediction from 
initial 5 cycles to 15 cycles, and the row represents the 
different noise levels and methods. The results show that our 
proposed method has a greater performance compared to the 
original BM, especially in the earlier stage (5~9 cycles). 
However, as more measurements are used until later stages 
(15 cycles), the prediction accuracies for both BM and 
constrained BM show not much difference. The grey shaded 
column represents the sum of MAEs from 5 to 15 cycles, and 
our proposed method has a reduced MAE of about 17 times 
compared to the original BM. Moreover, under the large 
noise data, the constrained methods show higher performance 
in the later stage. 
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Figure 7. MAE of 50 random datasets by BM 

 
Fig. 8 shows RUL curve plots with data uncertainty using the 
original BM and proposed methods. Fig. 8(a) presents the 
results under small noise level. The black line represents the 
true RUL value, while the red dashed line and shaded area 
represent the median and 90 C.I. of predicted RUL upper 
bound, respectively. The yellow and blue lines indicate the 
predicted RUL median and lower bound. The proposed 
constrained methods show reduced uncertainty and high 
accuracy compared to the general BM, particularly in the 
earlier stages. In the case of large noise data, the general BM 
fails to provide robust prediction. However, the proposed 
methods offer consistent uncertainty and accurate prediction 
of median throughout the stages. 

 
(a) 

 
(b) 

Figure 8. RUL curve plot using BM with (a) small noise 
level (b) large noise level  

 

In the following real case study, method 1 has difficulty 
obtaining the prior distribution knowledge in high 
dimensions and method 2 has the potential to discard samples 
that do not have a low likelihood. Thus, method 3 is 
implemented since it has the advantage of regularization 
effect without risk of losing samples, but the values of penalty 
parameters need to be selected appropriately. The 
computational complexity of each method is similar. 

6. CASE STUDY 

The Parrot Mambo drone (PMD) equipped with an 8520 
coreless DC motor is used as a real case study for RUL 
prognosis (Susini, n.d.). The PMD undergoes an accelerated 
test by taking off and hovering at 1.1m altitude with 
intermittent intervals. After 106 hours of experiment (48 
cycles of hovering tests), motor 4 experiences degradation. A 
health indicator (HI) of the motors, maximum thrusts, is 
estimated using Kalman filter (KF) at each cycle. In Fig. 9, 
the HI results for motor 1 (normal) and motor 4 (degraded) 
are shown as blue dots and red filled dots, respectively. Motor 
1 maintains its value between 0.2434 to 0.2370, while motor 
4 nonlinearly decreases and reaches the threshold (magenta-
colored line). RUL prediction is performed using these 
measurements with BM by constraint method 3. 

    
(a)                                             (b) 

Figure 9. (a) PMD (b) HI of motor at each cycle 

6.1. Prediction results 

Empirical degradation model for the motor HI is defined by 
the dual exponential function in terms of cycles, as it is 
widely employed for the non-linearly degrading trend such as 
batteries (He et al., 2011; Xing et al., 2013). 

𝑥# = 𝛽!,#𝑒𝑥𝑝E𝛽(,#𝑡#G + 𝛽),#𝑒𝑥𝑝E𝛽;,#𝑡#G        (12) 

where 𝑥#  is the HI of the motor, 𝑡#  is the cycle index, and 
β&(𝑖 = 1,… ,4)  are the model parameters. Initial prior 
distribution of the parameters to implement BM procedure 
are assumed as follows, which is rough range based on the 
degradation fitting over the entire cycles. From these, 5000 
samples are generated to be used for the sampling in BM. 

𝑥C	~	𝑈(0.23, 0.25), 𝛽$	~	𝑈(0.05, 0.15), 𝛽B	~	𝑈(0.2, 0.4) 
𝛽!,D	~	𝑈(−0.05, 0.05), 𝜎	~	𝑈(0,0.1) 

Fig. 10(a) and (b) compare the RUL prediction performance 
of different methods. Fig. 10(a) shows the comparison 
between the general BM and BM with constraint method. The 
red and blue dashed lines represent the prediction median of 

MAE
Method Overall

(1 ~ 20)
15 cycle⋯9 cycle⋯5 cycle

949.760.61⋯21.35⋯172.89BM

"
=
10 54.980.63⋯2.85⋯3.57 BM by method 1

56.280.63⋯2.56⋯3.84BM by method 2

57.240.65⋯2.60⋯3.92BM by method 3

1445.999.35⋯102.02⋯155.15BM

"
=
50 85.252.39⋯3.97⋯3.98BM by method 1

74.862.41⋯3.73⋯4.03BM by method 2

72.552.12⋯4.05⋯4.21BM by method 3

BM by method 1

BM by method 2 BM by method 3

General BM

BM by method 1

BM by method 2 BM by method 3

General BM
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the general BM and BM with constraint, respectively. The 
dotted line represents the prediction interval (P.I.) with 
estimated noise. The results show that the constrained BM 
gives more accurate and realistic prediction with narrower 
uncertainty bound compared to the general BM. 

Fig. 10(b) compares the RUL prediction under a single 
exponential model, a dual exponential model, and a dual 
exponential model with constraint method 3. The yellow 
shaded area represents the predicted RUL with 90% P.I. 
under the single exponential model from 20 cycles. The two 
parallel black dotted lines indicate an allowable error bound 
(α %) around the true RUL, set to 10% in this study. The blue 
and red stars represent the first cycle index when the 
predictions reside in the accuracy zone.  The red shaded area 
represents the predicted RUL under the dual exponential 
model and resides in the allowable error bound after about 34 
cycles. However, the original BM suffers from large 
fluctuations in the earlier stages and cannot provide reliable 
predictions over cycles. In contrast, the blue shaded area by 
the proposed constrained BM method shows reliable and 
accurate RUL prediction from 23 cycles, which is 11 cycles 
earlier than the original BM. 

  
(a) (b) 

Figure 10. Plot of (a) BM and BM by method 3 (b) RUL 
curve comparison by BM  

7. CONCLUSION 

The study proposed three approaches to improve the 
Bayesian framework for degradation prediction by 
incorporating low-fidelity physical information and 
inequality constraints. The proposed methods effectively 
reduced uncertainty and achieved better results, even with 
large noise in the dataset. Future work will integrate other 
Bayesian-based prognosis algorithms with physical 
constraints and study the optimal Lagrange multiplier value 
for regularization. In addition, implementing constraints with 
more complex physical equations will be further investigated.  
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