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ABSTRACT

Maintaining high standards for user safety during daily rail-
way operations is crucial for railway managers. To aid in
this endeavor, top- or side-view cameras and GPS positioning
systems have facilitated progress toward automating periodic
inspections of defective features and assessing the deteriorat-
ing status of railway components. However, collecting data
on deteriorated status can be time-consuming and requires
repeated data acquisition because of the extreme temporal
occurrence imbalance. In supervised learning, thousands of
paired data sets containing defective raw images and anno-
tated labels are required. Concretely, the one-class classifi-
cation approach offers the advantage of requiring quite a few
anomalous images to optimize parameters for training large
normal images. The deeper fully-convolutional data descrip-
tions (FCDDs) were applicable to several damage data sets of
concrete/steel components in structures, and fallen tree, and
wooden building collapse in disasters. However, it is not yet
known to feasible to railway components. In this study, we
devised a prognostic discriminator pipeline to automate one-
class classification using the augmented deeper FCDDs for
defective railway components. We also performed sensitivity
analysis of the mixture and erasing augmentations, and the
deeper backbone rather than the shallow baseline of convo-
lutional neural network (CNN) with 27 layers. Furthermore,
we visualized defective railway features by using transposed
Gaussian upsampling. We demonstrated our application to
railway inspection using a video acquisition dataset that con-
tains wooden sleeper deterioration. Finally, we examined the
usability of our approach for prognostic monitoring and fu-
ture work on railway component inspection.
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Figure 1. Illustration of derailment inside track

1. INTRODUCTION

1.1. Wooden Sleeper, Derailment Risk in Rural Railway

Derailment accident has been divided two types : derailment
inside track, and riding up outside rail. As shown in Fig. 1,
that is illustrated with reference to (Miwa, 2019), one of cause
of derailment inside track is why decayed wooden sleeper
makes strengthen the lateral pressure, and the distance be-
tween the parallel rails could expand. While analyzing fa-
tal train accidents on Europe’s mainline railways from 1980
to 2019, Evans discovered that train collisions, derailments,
and railroad crossings were the primary causes of accidents
(Evans, 2011)(Evans, 2020). In Japan, according to the traf-
fic safety committee’s 1987-2018 derailment statistics, there
were 173 cases, with three main causes: 65 natural disasters,
47 railroad crossings, and 33 railway infrastructures (Oyama
& Miwa, 2022). To prevent the potential accident of derail-
ment, condition-based and risk-based maintenance in railway
infrastructures have been one of key activities for daily oper-
ations. In detail, derailment accidents have been categorized
into two types based on the railway tracks: derailment among
inter-rails and riding on the outside rail. Frequently, inter-rail
derailments occur because decayed wood sleepers weaken the
supporting load of the rail, causing the distance between the
parallel rails to expand. Rural railway managers typically op-
erate on a small-scale and have a weak financial status, where
inter-rail derailment can negatively impact the profit per day
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kilometers because of the short length of running operations.
Given that rural rail tracks predominantly use wood sleep-
ers, derailment among the inter-rails is more likely to occur.
Therefore, in rural railway maintenance, monitoring wooden
sleeper deterioration is critical to reduce the risk of derail-
ment. However, repairing or renewing a decayed sleeper typ-
ically requires significant human labor. To improve the per-
formance of monthly inspections of rural railway tracks, deep
learning-based visual inspection techniques can be employed.

1.2. Existing Deep Learning for Visual Track Inspection

Tang et al. reviewed articles on artificial intelligence ap-
plications in railway systems from 2010 to 2020, categoriz-
ing them into five subdomains: maintenance and inspection,
traffic planning and management, safety and security, au-
tonomous driving and control, and passenger mobility (Tang
et al., 2022). The most popular research field was found to be
maintenance and inspection, with over 81 papers (57%). Ji et
al. reviewed existing deep learning applications for rail-track
condition monitoring from 2013 to 2021, specifically focus-
ing on supervised deep learning and recent adoption by rail
industries (Ji, Woo, Wong, & Quek, 2021). The number of
papers on this topic surged in 2018, and 14 regions worldwide
were represented in rail-related research. This indicates that
the rail industry has shown growing interest in adopting deep
learning methods. Of the studies, 70% used raw image-type
data for deep learning models, while the remaining types in-
cluded acoustic emission signals, defectograms, maintenance
records, and synthetic data from generative models. The pur-
pose of these studies was to detect, classify, and/or localize
rail surface defects, including various components such as
rails, insulators, valves, fasteners, and switches.

Over 38 deep learning models have been adopted by re-
searchers, with CNNs being popular for feature extraction
and RNN/LSTM being used for sequential data types. Re-
searchers followed a consistent process flow for deep learn-
ing applications for rail-track condition monitoring, with the
first subsystem being image acquisition using cameras in-
stalled on rail maintenance vehicles to capture input data. The
second subsystem involved optional prerocessing, where im-
ages were resized, enhanced, noise-removed, or cropped for
target areas using image-processing techniques. The input
data were then prepared for training and testing deep learning
models. Finally, the trained model was produced using the
parameters for real-world applications. Given the criticality
of rail-track condition monitoring, inspections by human op-
erators could double the accuracy of the system. However,
the distribution of rail-track image data is often uneven and
extremely disproportional, resulting in class imbalance prob-
lems. This study proposes an unsupervised learning method
using a one-class classification algorithm as a novel applica-
tion in rail-track condition monitoring.

Figure 2. Related models and targets for railway prognostic
inspection and our approach.

1.3. Anomaly Detection for Imbalanced Deterioration

Fig. 2 depicts several railway inspection applications that
utilize deep learning models for the detection of defective
classes of railway components. These applications are often
based on supervised deep learning approaches such as clas-
sification (Alvarenga et al., 2021; Chandran, Asber, Thiery,
Odelius, & Rantatalo, 2021) and object detection (Mi, Chen,
& Zhao, 2023; Hsieh et al., 2020; Hsieh, Hsu, & Huang,
2022). In supervised learning studies, the authors assigned
class labels by annotating whole images and bounding boxes
that enclosed defective regions. The railway components tar-
geted for defect detection include rail tracks, fasteners, and
sleepers. Railway defects are inherently uncertain events, and
the number of anomalous images is often imbalanced toward
the normal class. Defect classes are not yet completely de-
fined in railway inspections. For instance, Hsieh et al. (Hsieh
et al., 2020) defined six normal classes and four defective
classes by focusing on clips on wooden/concrete sleepers,
spikes, fishplate, slide-bed plates, and guard rail plates. The
authors collected a limited number of real images, which re-
sulted in seven classes having fewer than 100 defective im-
ages and three classes having two or more hundred images.

It is not easy to reconstruct synthetic images to represent
the health condition of railway components amidst a com-
plex background consisting of trees, grass, and ballast stone.
Furthermore, generating defective features as annotation data
that can contribute to architectural performance is challeng-
ing. Collecting defective status data to build a railway in-
spection application always requires significant time invest-
ment, given that the temporal occurrence of defects is ex-
tremely imbalanced. To achieve stable and high performance,
a supervised learning approach demands thousands of paired
datasets consisting of defective real images and annotated la-
bels or bounding boxes.
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In contrast, few studies have been published on the unsuper-
vised deep learning approach to automate visual inspection in
the field of railway track. Especially, the one-class classifica-
tion based anomaly detection has the advantage of requiring
quite a few anomalous images to optimize the parameters for
training relatively large normal images. Additionally, the vi-
sual heat map explanation enables us to discriminate between
localized defective features. The authors (Yasuno, Okano,
& Fujii, 2023) found that the deeper fully-convolutional data
descriptions (FCDDs) has been applicable to several damage
data sets of concrete/steel components in structures: pave-
ment, bridge, and dam, and fallen tree, and wooden building
collapse in disasters: typhoon, earthquake. However, it is not
yet known to feasible to railway components that includes
deterioration of wooden sleepers. In this study, we propose
a prognostic discriminator pipeline to automate the one-class
classification of defective railway components.

2. AUGMENTED ANOMALY DETECTION

2.1. Augmented Deeper FCDDs and Risk-weighted Score

The authors (Yasuno et al., 2023) have already reported the
deeper FCDDs and found the applicability to damage data
sets of bridge, dam, and building. However, as an unsuper-
vised deep anomaly detection approach, the deeper FCDDs
has been not yet known to feasible to video frame images in
railway track that contains ballast stones, rail, spike, fastener,
and concrete/wooden sleepers. For risk-based maintenance
of railways, visualizing hazard-mark heatmaps and comput-
ing risk-weighted anomaly scores is crucial for rural railway
inspection and prognostic support for effective repairs under
usable resources: time, labors, and budget.

Let Fi be the i-th frame of an image with a size of h×w. Let
Ai be the augmented image using a preprocess Ai = g(Fi)
mapping from the frame of raw image Fi. We consider the
number of training images and the weight W of the fully con-
volutional network (FCN). Let the ΦB

W (Ai) denote a mapping
of the deeper CNN to backbone B based on the input frame
image. The one-class classification model was formulated us-
ing the cross-entropy loss function as follows:

LDeepSV DD =− 1

n

n∑
i=1

(1− zi) log ℓ(Φ
B
W (Ai))

+ zi log[1− ℓ(ΦB
W (Ai))],

(1)

where zi = 1 denotes the anomalous label of the i-th frame
of the image and zi = 0 denotes the normal label of the i-th
frame of the image. A pseudo-Huber loss function is intro-
duced to obtain a more robust loss formulation (Ruff, Van-
dermeulen, Franks, Müller, & Kloft, 2021) in Equation (2).
Let ℓ(u) be the loss function and define the pseudo-Huber
loss as follows:

ℓ(u) = exp(−H(u)), H(u) =
√
∥u∥2 + 1− 1. (2)

Then, a deeper FCDD loss function can be formulated :

LdeeperFCDD =
1

n

n∑
i=1

(1− zi)

uv

∑
x,y

Hx,y(Φ
B
W (Ai))

− zi log

[
1− exp

{
−1
uv

∑
x,y

Hx,y(Φ
B
W (Ai))

}]
,

(3)

where Hx,y(u) are the elements (x, y) of the receptive field
of size u × v under a deeper FCDD. In the equation (3), if
we set an unsupervised learning, the positive second term
are canceled out. If we use an imbalanced data that includes
fewer anomalous images and relatively large normal images,
a deeper FCDD loss function (3) is less influenced by the pos-
itive second term. The risk-weighted anomaly score Srw

i of
the i-th image is expressed as the sum of all the elements of
the receptive field as follows:

Srw
i (B) = ri

∑
x,y

Hx,y(Φ
B
W (Ai)), i = 1, · · · , n. (4)

Here, ri is the weight of the derailment risk caused by the
wooden sleeper deterioration. For example, for larger ratios
of the curve, the weight ri can be set higher. Specifically, we
can provide i-th ratio of the curve to match the position by the
global navigation satellite system (GNSS). In contrast, when
the deteriorated wooden sleeper and the precast concrete (PC)
sleeper are adjacent, the weight ri may be set lower. In the
present study, we set the risk neutral environment that ri = 1.

We herein present the construction of a baseline FCDD
(Yasuno et al., 2023) with an initial backbone B = 0 and per-
formed CNN27 mapping Φ0

W (Ai) from the augmented input
image Ai in the dataset. We also present deeper FCDDs fo-
cusing on elaborate backbones B ∈ {VGG16, ResNet101,
Inceptionv3} with a mapping operation ΦB

W (Ai) to achieve
more elaborately performance. In this paper, we present ab-
lation studies on a rural railway dataset for detection towards
decayed wooden sleeper.

2.2. Mixture and Erasing Augmentations

The past decade has seen renewed importance of augmented
image data for deep learning (C. Shorten, 2019). Image data
augmentation is categorized into two i.e., basic image ma-
nipulation and deep learning approaches. The former aug-
mentation includes 1) kernel filters, 2) geometric transfor-
mations, 3) random erasing, 4) mixing images, and 5) color
space transformations. The latter consists of three compo-
nents: 1) adversarial training, 2) neural style transfer, and 3)
generative learning model-based transformation.

To address the challenges of imbalanced fewer anomalous
data and complex rail track scene, we think that augmenta-
tion preprocessing such as mixup, and random erasing can be
effective for one-class classification models. In the present
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study, we proposes the preprocess of image manipulations us-
ing mixing and random erasing techniques as follows. Using
multiple raw images in the imbalanced fewer anomalous data
and relatively large normal one, the mixture image augmen-
tation creates diversified images, such as the Random Eras-
ing (Zhong, Zheng, Kang, Li, & Yang, 2020), mixup (Zhang,
Cisse, Dauphin, & Lopez-Paz, 2018)(Tango, Ohkawa, Fu-
ruta, & Sato, 2022), Cutout (Devries & Taylor, 2017), and
RICAP (Takahashi, Matsubara, & Uehara, 2018). To detan-
gle the ballast and grassy feature in railway track, the random
erasing technique is straightforward and efficient as the re-
gional dropout in the training images. We also believe that the
augmentation of mixing images diversifies the deteriorated
region of interest on the wooden/precast sleeper and ballast
background on the imbalanced data set in railway track.

2.3. Hazard-mark Heatmap Upsampling Receptive Field

Convolutional neural network (CNN) architectures, compris-
ing millions of common parameters, have exhibited remark-
able performance for visual inspection, but the underlying
reasons for this superiority remain unclear. Heatmap visu-
alization techniques for detecting and localizing anomalous
features are typically categorized as masked sampling and ac-
tivation map approaches. The former includes methods such
as occlusion sensitivity (Zeiler & Fergus, 2013) and local
interpretable model-agnostic explanations (Ribeiro, Singh,
& Guestrin, 2016). The latter category includes activation
maps such as class activation maps (CAMs) (Zhou, Khosla,
Lapedriza, Oliva, & Torralba, 2015) and gradient-based ex-
tensions (Grad-CAM) (Selvaraju et al., 2017). Nonetheless,
aforementioned methods of disadvantage is its requirement
for parallel computation resources and iterative computation
time for local partitioning, masked sampling, and for gener-
ating a gradient-based heatmap.

In this study for railway inspection applications, we adopt the
receptive field upsampling approach (Liznerski et al., 2021)
to visualize anomalous features using an upsampling-based
activation map with Gaussian upsampling from the receptive
field of the FCN. The primary advantages of the upsampling
approach are the reduced computational resource require-
ments and shorter computation times. The proposed upsam-
pling algorithm generates a full-resolution anomaly heatmap
from the input of a low-resolution receptive field u× v.

Let H ∈ Ru×v be a low-resolution receptive field (input),
and let H ′ ∈ Rh×w be a full-resolution of hazard-mark
heatmap (output). We define the 2D Gaussian distribution
G2(m1,m2, σ) as follows:

[G2(m1,m2, σ)]x,y ≡
1

2πσ2
exp

(
− (x−m1)

2 + (y −m2)
2

2σ2

)
.

(5)

The Gaussian upsampling algorithm from the receptive field

is implemented as follows:

1. H ′ ← 0 ∈ Rh×w

2. for all output pixels d in H ← 0 ∈ Ru×v

3. u(d)← is upsampled from a receptive field of d
4. (c1(u), c2(u))← is the center of the field u(d)

5. H ′ ← H ′ + d ·G2(c1, c2, σ)

6. end for
7. return H ′

After conducting experiments with various datasets, we de-
termined that a receptive field size of 28 × 28 is a practi-
cal value. When generating a hazardous heatmap, unlike a
revealed damage mark, we need to unify the display range
that corresponds to the anomaly scores, which range from the
minimum to the maximum value. In order to strengthen the
defective regions and highlight the hazard marks, we define
a display range of [min, max/4], where the quartile parame-
ter is 0.25. This results in the histogram of anomaly scores
having a long-tailed shape. If we were to include the com-
plete anomaly score range, the colors would weaken to blue
or yellow on the maximum side.

Table 1. Imbalanced training dataset of wooden sleeper dete-
rioration.(In both class, the calibration 150 and test 200 im-
ages were fixed respectively.)

Positive ratio Anomalous Normal
1/1(supervised) 650 650

1/2 325 650
1/4 163 650
1/8 81 650

1/16 41 650
1/32 20 650
1/64 10 650

1/650(unsupervised) 1 650

3. APPLIED RESULTS

3.1. Field Data Acquisition and Dataset Preparedness

As presented in Table 1, we have demonstrated a railway-
related application through an experimental study on a rural
railway track. In the present study, we prepared 2000 images
that contains anomalous 1000 and normal 1000. Herein, the
whole 1000 images in each class were partitioned at a ratio of
65:15:20 for the training 650, calibration 150, and test 200.
In both class, the calibration and test images were fixed re-
spectively.

We collected the dataset by recording videos using a camera
mounted on a train traveling along a single track with a length
of approximately 80 km in Japan. It iterated 2 days with
sunny weather (March 9, 2023) and cloudy weather (April
26, 2023). The videos were recorded at a rate of 30 frames
per second, which provided too much information to be used
directly for learning an anomaly detection model. Therefore,
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we used every fourth frame to generate 79 thousand images,
which were then overlapped to represent the railway track in
its entirety.

In the study, we created a dataset for demonstration to au-
tomate anomaly detection toward the wooden sleeper deteri-
oration. We used transfer learning based on ResNet18 and
ResNet101 to build two classification models to prepare the
input data from the cropped images, summarized in follows.

1. Cropping top far and horizontal edges to reduce outside
the region of interest.

• To minimize background noise, we cropped each
4K frame to a size of 1200×1920 from the original
size 2160×3840.

• Crop the top far view of upper region with the height
of 880 pixels(40.7%)where getting rough pixel data.

• Crop the horizontal edges 1280 pixels(33.3%) to
sum up the left-side of 640 pixels and right-side of
640 pixels outside the rail track.

2. Shadow/dark/without classification.

• Since many locations contained large shadows or
dark conditions, we built a shadow/dark/without
shadow, classifier using ResNet18 with three
classes: shadows in sunny weather, whole darkness
in tunnel, and clear track without shadow.

• We randomly selected 3000 images from the
cropped images and labeled them as 1458 shadows,
152 whole darkness, and 1390 without shadows.

• We trained the model using mini-batch 32 and 15
epochs, iterated using Adam, which resulted in a
test accuracy of 96.7%.

• We predicted the 79 thousand cropped images us-
ing the shadow/dark/without classifier and cate-
gorized them as 15006(19.0%) shadow in sunny
weather, 8894(11.2%) whole darkness in tunnel,
and 55180(69.8%) clear track without shadow.

3. Grassy/decayed wooden sleeper/normal classification.

• There were conditionally grassy spots on the ballast
track, wooden sleepers, and outside the track in each
frame image.

• Therefore, we built a grassy/decayed wooden
sleeper/normal classifier using ResNet101 with
three classes: grassy, decayed wooden sleeper, and
normal without grass.

• We randomly selected 1500 images from the clear
track of cropped images and labeled them as 270
grassy, 435 decayed wooden sleepers, and 547 nor-
mal without grass.

• We trained the model using a mini-batch of 128 and
15 epochs, iterated using Adam, which resulted in a
test accuracy of 66.4%.

• We predicted the 55180 clear track of cropped im-
ages without shaddows, using the grassy/decayed
wooden sleeper/normal classifier and categorized
them as 6488(27.0%) grassy, 5659(23.6%) decayed
wooden sleeper, and 11853(49.4%) normal class.

4. Finally, for the present imbalanced studies, we annotated
1000 decayed wooden sleepers and 1000 normal images
that includes neither shaddow nor grass.

Figure 3. Cropped images of predicted results by first trained
the ResNet18 classifier with 3 classes: shadow/dark/without.

As depicted in Fig. 3, the test images illustrate examples
predicted by our initial classifier for shadow noise reduc-
tion, where we developed a classification model utilizing
ResNet18 with three distinct classes : shadows in sunny
weather, complete darkness in tunnel, and clear track with-
out shadows.

3.2. Backbone Studies of Supervised Anomaly Detector

In the balanced data situation as shown in Table 1, the training
data contains anomalous 650 images and normal 650 images.
Herein, We implemented deeper backbone studies using the
VGG16, ResNet101, Inceptionv3. During the training of the
anomaly detector, we fixed the input size to 2242. To train the
model, we set the mini-batch size to 32 and ran 60 epochs.
We used the Adam optimizer with a learning rate of 0.0001, a
gradient decay factor of 0.9, and a squared gradient decay fac-
tor of 0.99. The training images were partitioned at a ratio of
65:15:20 for the training, calibration, and testing images. As
shown in Table 2, our deeper FCDDs based on VGG16 (ab-
breviated as deeperFCDD-VGG16) outperformed the base-
line CNN27 and other backbone-based deeper FCDDs in this
railway dataset for detecting decayed wooden sleeper.

Table 2. Backbone ablation studies on defective detection
using our proposed deeper FCDDs for Wooden sleeper.

Backbone AUC F1 Precision Recall
CNN27 0.8624 0.7688 0.7088 0.8400
VGG16 0.9425 0.8475 0.8770 0.8200

ResNet101 0.9304 0.8108 0.8823 0.7500
Inceptionv3 0.9412 0.8041 0.8415 0.7700
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3.3. Imbalanced and Unsupervised Training Studies

As shown in Table 3, we implemented ablation studies on im-
balanced data that contains fewer anomalous images and rel-
atively large normal images. Herein, we applied our deeper
FCDD-VGG16 achieved high performance in the aforemen-
tioned supervised results. Compared with the balanced case
of positive ratio 1/1, we found that there was applicable range
from the balanced ratio 1/2 to the ratio 1/16 where the ac-
curacy were consistently high performance. However, ex-
tremely imbalanced range from 1/32 to 1/650, that accuracy
were inferior to those of aforementioned applicable range.
The rare positive ratio 1/32 represent the imbalanced data that
contains quite a few 20 anomalous images and relatively large
650 normal images. In the situation, much more anomalous
images should be acquired and added to the initial dataset.

Table 3. Imbalanced data studies using our deeper FCDD-
VGG16 for wooden sleeper deterioration.

Positive ratio AUC F1 Precision Recall
1/1(superv.) 0.9425 0.8475 0.8770 0.8200
1/2(ano.325) 0.9467 0.8031 0.8579 0.7550
1/4(ano.163) 0.9468 0.8536 0.8472 0.8600
1/8(ano.81) 0.9469 0.8366 0.8284 0.8450

1/16(ano.41) 0.9354 0.8516 0.8165 0.8900
1/32(ano.20) 0.9255 0.8131 0.8214 0.8050
1/64(ano.10) 0.8942 0.8213 0.7662 0.8850

1/650(unsuperv.) 0.6279 0.6250 0.6845 0.5750

3.4. Augmention Studies of Supervised Anomaly Detector

As shown in Table 4, we demonstrated the mixture and ran-
dom erasing preprocess to our deeper FCDD-VGG16 on the
balanced data that the number of normal and anomalous class
are same value respectively. Compared to never augmenta-
tion case in the first row, the Gaussian noise-based Random
Erasing augmentation improved accuracy in terms of the F1

and recall rather than others such as the mixup(α = 0.2),
RICAP, and Cutout(dropout ratio 0.5). To automate visual
inspection, the recall is critical for minimizing false positive
error. We found that the Random Erasing augmentation im-
proved recall accuracy without large loss of precision in the
balanced data set.

Table 4. Augmentation studies using our deeper FCDD-
VGG16 for wooden sleeper deterioration.

Augmentation AUC F1 Precision Recall
never Aug. 0.9425 0.8475 0.8770 0.8200

mixup 0.9401 0.8467 0.8810 0.8150
RICAP 0.9392 0.8377 0.8791 0.8000
Cutout 0.9380 0.8238 0.8994 0.7600

RandomErasing 0.9383 0.8719 0.8592 0.8850

3.5. Hazard-mark Heatmaps for Railway Prognostics

We visualized he damage features by using Gaussian upsam-
pling in our Random Erasing deeper FCDD-VGG16 network.
Additionally, we generated a histogram of the anomaly scores
of the test images in the balanced case. In Fig. 4, a hazard-
mark explanation is presented. The red region in the heatmap
represents the decayed wooden sleepers. There is few region
of false negative error over the ballast stones, precast concrete
sleeper, and grass outside rail track. Fig. 5 illustrates that sev-
eral overlapping bins exist in the horizontal anomaly scores.
Therefore, for detecting decayed wooden sleepers, the score
range was moderately separated.

Figure 4. Input raw images (top) and hazard-mark heatmaps
(bottom) of decayed wooden sleeper using our Random Eras-
ing deeper FCDD-VGG16.

4. CONCLUDING REMARKS

4.1. Railway Inspection Application for Imbalanced Data

We developed a railway inspection application to automate
one-class anomaly detection. To ensure feasibility of a rail-
way application, we assessed an unsupervised and imbal-
anced anomaly detection approach for deeper FCDDs with
pretrained backbones of VGG16, ResNet101, and Incep-
tionv3. To support decision to repair the wooden sleeper and
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Figure 5. Histogram of decayed wooden sleeper scores cor-
responding to our Random Erasing deeper FCDD-VGG16.

minimize the possibility of derailment for safe railway oper-
ations, we represented an index of the risk-weighted anomaly
score. Additionally, we visualized hazard-mark heatmaps
using direct Gaussian upsampling of the receptive field of
the FCN. In the present study, we evaluated our augmented
deeper FCDDs on the targets of decayed wooden sleepers.

Our experiments produced a high accuracy over 87% in terms
of F1 and recall using our Random Erasing deeper FCDD-
VGG16 architecture. That created the hazard-mark heatmap
for visual explanation, even without annotating the decayed
wooden sleeper at the localized regions. In our imbalanced
studies, compared with the balanced case of positive ratio 1/1,
we found that there was applicable range from the balanced
ratio 1/2 to 1/16, where the accuracy were consistently high.
However, extremely imbalanced range from 1/32 to 1/650,
whose accuracy were inferior to those of aforementioned ap-
plicable range. Thus, our work presented a novel solution
for augmented deeper FCDDs that offers a imbalanced de-
terioration detection tool for visual railway inspections and
hazard-explainability.

4.2. Limitations and Future Works

This study discovered the feasibility of imbalanced anomaly
detection highlighting wooden sleeper in railway track. How-
ever, this is limited on the target of wooden sleeper deteri-
oration. The video images had few variations collected at
spring season. Winter season may influence the unseen noise:
shadow from west sunshine, decayed grass, iced, and snowy.
The Random Erasing deeper FCDD-VGG16 achieved over
87% in terms of F1 and recall. For more accurate appli-
cations, we have an anomalous data mining opportunity to
train the remained dataset of over 5000 images that we have
classified into 2000 decayed wooden sleeper, and 3000 nor-

mal images. Several promising directions exist for future re-
search to improve the usability of visual inspection applica-
tions. To address the challenges of imbalanced data, this is-
sue remains for infrequent defects such as spikes out of rail
from wooden sleepers, cracks of concrete sleepers, and holes
on ballast tracks. To overcome this challenge, the anomaly
score generated by our deeper FCDDs can be used in edge
devices for effective data acquisition of rare classes. By col-
lecting only the frames that have hazard marks with signifi-
cantly higher anomaly scores than a predefined threshold, the
data acquisition process can be made more efficient. For risk-
based maintenance to incorporate the potential hazard of de-
railment in each track, we are able to add the label of curve
ratio (Oyama & Miwa, 2022). Then, we can utilize the risk-
weighted anomaly score for supporting to make a decision of
priority to repair for sustainable and safety operations.
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