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Abstract

To improve the availability of rotating machines such as wind
turbines, where rolling bearing replacement is costly and time-
consuming, it is effective to estimate the damage progression
of the rolling bearings. As one of the damage progressions,
the size of flaking in rolling bearings is estimated by vibration
analysis using rule-based methods. However, these rule-based
methods require expert knowledge of rolling bearings. There-
fore, an estimation model using deep learning was proposed
and its performance was evaluated. Furthermore, it was ver-
ified that the proposed model had extracted the features of
physical phenomena using Grad-CAM.

1. Introduction

Monitoring and diagnosing rotating machinery and perform-
ing maintenance at the appropriate stage is necessary to im-
prove the operating efficiency of rotating machinery. One of
the most critical maintenance targets is the fault of rolling
bearings, a mechanical element loaded in rotating machinery
parts. Failure of rolling bearings can take many forms, but
the most common type of failure is ’flaking,’ where the defect
occurs when part of the raceway of the rolling bearing flakes
off. Diagnosis of flaking involves detecting periodic shocks
in bearing vibrations ( Randall and Antoni (2011)).

One development of rolling bearing flaking diagnosis is es-
timating the remaining useful life by estimating the flaking
size from vibrations. Flaking size progresses with contin-
ued operation after flaking, causing severe problems due to
the machinery’s rotational accuracy, vibration, and acoustics.
Avoiding this severe damage by the diagnosis benefits ma-
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chinery with high maintenance costs, such as wind turbines.
A typical method for estimating the flaking size is to detect
the vibration of the rolling elements of the bearing as they
enter and exit the flaking and to calculate the interval between
the two( Sawalhi and Randall (2011)).

However, estimating flaking size from vibration on a rule-
based basis is time-consuming and financially costly, as it
usually requires trial and error with high expertise. High ex-
pertise in installing appropriate vibration sensors and tuning
the parameters of noise reduction methods in the vibration im-
proves the detectability of feature vibrations for flaking size
estimation. In the feature vibrations in flaking size estima-
tion, the difficulty of detecting vibrations, particularly those of
rolling elements entering the flaking, is mentioned in Smith,
Hu, Randall, and Peng (2015). F. Zhang, Huang, Chu, and
Cui (2020) focus on the problem of overlapping vibrations of
multiple rolling elements with expanding flaking size, making
it challenging to detect the feature vibrations.

We propose a flaking size estimation model based on deep
learning and evaluate its performance to avoid diagnostic
costs due to the high expertise. Deep learning models of
rolling bearing vibration diagnosis have been studied to clas-
sify mainly flaking damaged parts. W. Zhang, Peng, Li, Chen,
and Zhang (2017) proposed a WDCNN using 1d vibration ac-
celeration waveforms as input and applying large kernel sizes
to shallow layers. Lu et al. (2023) proposed a PICNN with
the envelope spectrum of the vibration acceleration waveform
as input, weighted along the impact vibration period in the
case of bearing flaking. This study proposes a CNN-LSTM
model with 1d vibration acceleration waveform and its inte-
grated velocity corresponding waveform as parallel inputs. To
verify the performance of the proposed flaking size estimation
model, a dataset containing vibrations of various flaking sizes
was made and used. The dataset measured the acceleration of

1

4th Asia Pacific Conference of the Prognostics and Health Management,
Tokyo, Japan, September 11 – 14, 2023 OS12-03



Asia Pacific Conference of the Prognostics and Health Management Society 2023

an artificial defect machined into the inner ring of a cylindri-
cal roller bearing when it was allowed to progress under high
load conditions for an extended period.

We also verified the explainability of the proposed model in
estimating the flaking size. As an explanation, we verified
in Grad-CAM whether the vibration features are related to
the estimation results in a way equivalent to the rule-based
method with high expertise. Explanability has been studied in
deep learning vibration diagnosis of rolling bearings, mainly
in classifying flaking-damaged parts, by confirming whether
periodic shocks, equivalent to rule-based methods, are related
to the classification results. Li, Zhang, and Ding (2019) added
an Attention mechanism to a model for classifying flaking-
damaged parts using 1d vibration acceleration waveforms as
input. They confirmed that Attention is higher for periodic
shock vibration. Chen, Liu, He, Liu, and Zhang (2022)
proposed GS-CAM, which provides a richer visualization of
the relationship between periodic shocks in the deep learning
model and the classifying results. In this study, Grad-CAM
is used to visualize that the results of the proposed model’s
flaking size estimation are related to the vibration of the rolling
element as it enters and exits the flaking, similar to the rule-
based model.

2. Proposed Method

2.1. CNN-LSTM Flaking Size Estimation Model

Figure 1 gives an overview of the proposed model. The
proposed model consists of an acceleration feature extrac-
tor(FEA), a velocity feature extractor(FEV), a composite fea-
ture extractor(FEC), an LSTM layer, and a regressor. The
CNN layer of all feature extractors consists of a Convlution
layer, Average pooling layer, and SE-block, with Swish as the
activation function. The parallel inputs to the model are the
1d vibration acceleration waveform and the velocity equiva-
lent waveform integrated from it, respectively. The parallel
inputs are used to extract the feature vibrations required for
flaking size estimation and to verify the explainability using
Grad-CAM. The feature vibrations required for rule-based
flaking size estimation correspond to the velocity-equivalent
signal for the low-frequency range of the entry vibration of
the rolling element into the delamination and the acceleration
signal for the broadband range of the exit vibration.

2.2. Explanability Verification Method

Grad-CAM was applied to the proposed trained model to ver-
ify whether the vibration of the rolling element entering and
exiting the bearing flaking size estimation model contributes
to the estimation results. Grad-CAM is a method for visual-
izing the parts of the input data that contribute to the output
results in deep learning models and is mainly used for image
models. In this study, Grad-CAM was applied to the final
layer of the velocity and acceleration feature extractors (FEA
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Figure 1. Overview of proposed flaking size estimation CNN-
LSTM model.

and FEV respective fourth layer outputs) to verify the contri-
bution of feature vibrations similar to rule-based flaking size
estimation.

2.3. Various Flaking Size Dataset

To train and test the proposed model, we used a vibration
dataset from a test rig using a cylindrical roller bearing
NU2228EM with an artificial defect machined on the inner
ring to simulate flaking. This data set contains vibration data
for various flaking sizes during the long-term operation of
the test rig containing the bearing with the machined defects.
The test rig was stopped several times during the long-term
operation when flaking size were measured, and vibration
data were acquired under several conditions with loads and
rotational speeds. Table 1 describes the operating and mea-
surement conditions of the test.

2.4. Verification

To validate the performance of the proposed model in esti-
mating the separation size, we performed a five-fold cross-
validation in which the dataset was split into five parts, and
the train-test data was combined 4:1 a total of five times. In
addition, the train-test data were split under conditions where
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Table 1. Operating and measurement conditions of test for the
various flaking size dataset

Bearing number NU2228EM
Bearing type cylindrical roller

Rotational speed 3 speeds(1200, 1500, 1750min−1)
Load 7 radial loads(29.3k - 205kN)

Test pieces num. 2
All condition num. 220
Sensor direction 2 directions(Radial, Axial)

sampling frequency 96kHz
sampling time 30s

the real-time of the rolling elements entering and exiting the
flaking was not matched. The vibration data under each oper-
ating condition was split into frames of 8,192 points each, and
an equal number of frames were randomly selected from the
files for each operating condition for a total of 61,772 frames
used for training. The output labels of the model during the
training were set to the following equation.

𝑌 = − ln(
𝑃 𝑓 𝑙𝑎𝑘𝑖𝑛𝑔

𝑃 𝑓 𝑟𝑎𝑚𝑒
) (1)

𝑌 is the ture output value, 𝑃 𝑓 𝑙𝑎𝑘𝑖𝑛𝑔 is the number of data
points equivalent to the grand-truth flaking size, and 𝑃 𝑓 𝑟𝑎𝑚𝑒

is the number of data points for the entire frame.

Table 2 shows the training conditions. All frames divided from
the entire file under each operating condition were inferred in
sequence in the inference using the test data. The average
value of the entire output was used as the result of the flaking
size estimation.

Table 2. Training conditions

Epoch num. 50
Learning rate 2.5e-4 to 1.0e-3(WarmUp)

Train frames num. 61,776
Mini-batch num. 32

3. Results

3.1. Flaking Size Estimation Performance

The results of the five-fold cross-validation show the estimated
and actual flaing lengths for each operating condition of the
test data, as shown in Figure 2. In this figure, the estimated
and actual flaking sizes are expressed as a ratio to the pitch
of the rolling element spacing in order to compare the results
under all operating conditions. The difference between the
estimated and grand-truth values is mostly within 0.15 pitch
of the rolling element pitch, except for the operating condi-

Figure 2. Comparison of estimates and true values for each
operating condition in five-fold cross validation tests.

tions where the flaking size greatly exceeds one pitch of the
rolling element pitch. The accuracy of the estimation results
for test data with a flaking size exceeding 1.4 pitches tends
to be low, which can be assumed to be due to the test condi-
tions being the closest to extrapolation. However, in flaking
size estimation, the effect of low extrapolation performance is
limited because estimation accuracy of less than one pitch is
essential for bearing remaining useful life estimation. These
results verified the construction of a deep learning model that
can accurately estimate the flaking size from rolling bearing
vibration.

3.2. Explanability

Figure 3 shows an example of grad-cam results when a test
data frame is an input to the trained proposed model. The
test data in this example has a flaking size of 0.77 pitch and a
rotational speed of 1, 200𝑚𝑖𝑛−1, which means that the interval
between feature vibrations in the input data is approximately
500 points. The importance of the final layer output of the
velocity feature extractor is high for the vibration of the rolling
body entering the flaking. In contrast, the importance of the
final layer output of the acceleration feature extractor is high
for the impact vibration of the rolling body exiting the flaking.
The results show that the same vibration features as in the rule-
based flaking size estimation method with high expertise are
related to the estimation results in the proposed model.

4. Conclusion

We proposed a CNN-LSTM model for estimating the flaking
size of rolling bearings from vibration and verified its per-
formance using a dataset with progressed artificial defects.
The verification results showed that the size estimation was
highly accurate except for the case of long flaking size. Grad-
CAM was also performed to verify the explainability of the
proposed model, and the essential vibration features in the
rule-based model were also essential in estimating the pro-
posed model. This estimation following physical phenomena
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Figure 3. Example of Grad-CAM results for a trained model.

is the explainability of the proposed model. On the other
hand, the proposed model has the same problem of training
data availability as the conventional deep learning model for
rolling bearing diagnostics, so a method for training models
with higher generalization performance using transfer learn-
ing and other method is needed.
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