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ABSTRACT

In recent years, nondestructive testing of civil engineering
structures has become increasingly important. Ultrasonic
testing is one of nondestructive inspection methods for civil
structures. However, the inspection of civil engineering struc-
tures takes much time because of the extensive scope of the
inspection. Moreover, in the field of nondestructive testing,
there are also concerns about a future shortage of inspectors,
so that an innovative effective nondestructive method need to
be developed. This study proposes using deep learning for
laser ultrasonic visualization testing. The effectiveness of the
proposed method is confirmed by applying it to a concrete
structure with a surface defect.

1. INTRODUCTION

Nondestructive testing has become increasingly important for
civil and mechanical engineering structures in recent years.
The ultrasonic method is the most widely used nondestructive
evaluation method in the field (Rose, 2008)(Schmerr, 1998).
The presence, absence, and location of defects in the ultra-
sonic nondestructive evaluation method are determined by
checking for scattered waves. However, it is difficult to de-
termine the location of defects from only a simple A-scope
waveform. Especially for concrete materials, this determina-
tion is more difficult because the received waveform contains
a lot of noise.

There exists a method called Laser Ultrasonic Visualization
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Testing (LUVT) (Takatsubo et al., 2008) that can quickly de-
termine the presence or absence of defects at a glance. LUVT
can visualize ultrasonic wave propagation on the laser irradi-
ated surface, as will be shown later. The greatest advantage
of LUVT is that it can easily determine the presence and lo-
cation of defects from ultrasonic visualization results, even if
the inspector is not familiar with nondestructive testing. For
example, Yashiro et al. (Yashiro, Toyama, Takatsubo, & Shi-
raishi, 2010) used LUVT to visualize ultrasonic wave propa-
gation in welds. Saitoh et al.(Saitoh, Mori, Ooashi, & Naka-
hata, 2019) estimate elastic constants of CFRP (Carbon Fiber
Reinforced Plastic) with the acoustic anisotropy from time-
domain ultrasonic wave propagation images generated by us-
ing LUVT. While LUVT has been applied to metallic and
anisotropic materials like CFRP, its application to concrete
has been limited. The reason for this is that ultrasonic wave
propagation in concrete is extremely complicated by multiple
scattering due to material inhomogeneity.

On the other hand, the use of artificial intelligence (AI) has
attracted attention as a means of automating non-destructive
inspections. AI is being considered in nondestructive testing
to reduce the workload of inspectors. Meng et al. (Meng,
Chua, Wouterson, & Ong, 2017) used a deep convolutional
neural network to identify a defect from ultrasonic wave-
forms. Saitoh et al. (Saitoh, Kato, & Hirose, 2021) utilized
deep learning to identify the presence or absence, and type
of a defect in images obtained by the time-domain bound-
ary element method (Saitoh, Hirose, Fukui, & Ishida, 2007)
that are equivalent to those obtained by LUVT. On the other
hand, Nakajima et al.(Nakajima, SAITOH, & KATO, 2022)
predicted the presence or absence of defects in images by per-
forming deep CNN (Convolutional Neural Network) on im-
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Figure 1. LUVT experimental setup for a concrete spacimen.

(a) (b)

defect

140mm

140mm

70mm

70mm

Figure 2. A concrete specimen and the sensor used in this
study.

age data obtained by LUVT on actual isotropic homogeneous
materials. While deep learning has been applied to deter-
mine the presence or absence of defects in LUVT images of
isotropic homogeneous materials, it has not been widely used
for materials with strong heterogeneity, such as concrete.

Therefore, this study aims to use deep learning to determine
the presence or absence of defects in LUVT images of con-
crete materials, building on previous research. In the follow-
ing, we first describe the experimental conditions and other
aspects of LUVT conducted in this study. Next, we present
examples of ultrasonic wave propagation images of concrete
material surfaces obtained by LUVT. After a brief descrip-
tion of deep learning, we present the results of determining
the presence or absence of defects in actual concrete material
LUVT images. Finally, we summarize the conclusions and
future issues.

2. LUVT SETUP

LUVT experimental condition is introduced in this section.
Fig. 1 shows the practical LUVT situation for a concrete
specimen in this research. A laser emitted from the right side
in Fig. 1 is irradiated onto the front surface of the concrete
specimen. The laser ultrasonic waves are excited from the
laser irradiation spots, they propagate and some of them are
received by an AE sensor. In this work, an AE sensor with

(a)

(b)

(c)

(d)

Figure 3. Time-variations of laser ultrasonic wave propaga-
tion on the surface of the concrete specimen without a defect.

the 144KHz central frequency is utilized as shown in Fig.
2. The surface geometry of the concrete specimen is about
140 mm × 140 mm and this concrete specimen has a pene-
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trate cavity with diameter≃10 mm. This laser ultrasonic wave
reception process is repeated for many irradiation spots, ac-
cording to the laser scan. Then, using the receprocity theorem
(Achenbach, 2004), the laser irradiation point and the receiv-
ing point can be swapped to obtain a waveform as if ultrasonic
waves were transmitted from the receiving point. The laser
irradiation points are taken within the front face of the con-
crete specimen, covering an area of approximately 70 mm ×
70 mm, shown by the green line in Fig. 2(a). In this study, the
laser pitch spacing ∆x and ∆y in the horizontal and vertical
directions are set as ∆x = 0.237mm and ∆y = 0.582mm,
respectively. The laser irradiation points Nx and Ny for each
direction are Nx = 295 and Ny = 120, respectively. The
sampling rate in this measurement experiment is 12.5 MHz.

A number of such LUVT experiments are carried out to pre-
pare a number of ultrasonic wave propagation images of the
surface of the concrete specimen, as shown in Fig. 1. The
ultrasonic wave propagation images obtained here are used
as training and test data for the deep learning described in
Section 4.

3. VISUALIZATION OF ULTRASONIC WAVES ON
CONCRETE SURFACE

In general, a concrete is inhomogeneous material with aggre-
gates. The multiple scattering is generated by the interaction
between an incident wave and aggregates. Therefore, the in-
cident wave with a small wavelength, which is comparable to
the size of aggregates, is not typically used due to the multi-
ple scattering it induces. In this work, the larger defect than
general aggregate size is considered.

Figs. 3 and 4 show examples of LUVT results for a concrete
specimen without and with a defect, respectively. In the case
with a defect, the defect is located slightly above the centre.
In the process of image processing, a 500KHz bandpass filter
is used. Focusing on the case with a defect in Fig. 3, the inci-
dent wave from the top center travels to lower surface along
with the multiple scattering. As seen in Fig. 3, the ultrasonic
wave propagation and scattering phenomena in concrete ma-
terials are very complicated. On the other hand, we examine
the case with a defect as shown in Fig. 4. In Fig. 4(a), the
incident wave is transmitted. Although the experimental con-
ditions for the LUVT are the same as those for the defect-free
case, it can be observed that the ultrasonic wave propagation
differs from that shown in Fig. 3 due to the differences in
the test specimens and the appearance of the aggregate distri-
bution inside the concrete. In Fig. 4(b), it can be seen that
the incident wave reaches the vicinity of the defect. Because
the incident wave cannot propagate inside the cavity, it can
be observed propagating around it. In addition, as shown in
Figs. 4(c) and (d), the incident wave propagates with repeated
multiple scattering between aggregates.

From Figs. 3 and 4, it is clearly difficult to identify a defect
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Figure 4. Time-variations of laser ultrasonic wave propaga-
tion on the surface of the concrete specimen with a defect.

when the size of the defect is comparable to that of the aggre-
gate. Thus, the limited detectability of defect size in concrete
can be observed. Note that, theoretically, the ultrasonic waves
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do not propagate inside the defect. However, due to noise in
the laser measurement, it appears that a slight ultrasonic wave
propagation occurs inside the cavity in Figs. 4(c) and (d).

Now, the inspector must visually determine the presence, lo-
cation, and size of defects based on the images obtained from
the LUVT test (or ultrasonic wave propagation movies gen-
erated from a group of images) as shown in Figs. 3 and 4.
If machines are capable of making these visual judgments,
not only could the workload of inspectors be reduced, but in-
spections could be conducted more efficiently. Future robotic
inspections will be possible if machines can automatically de-
termine the presence or absence of defects. Therefore, in the
following sections, an attempt is made to use deep learning
to identify the presence or absence of defects in the LUVT
images as shown in Figs. 3 and 4.

4. DEEP LEARNING

In general, CNN is highly effective when the training data
are images. A CNN-trained AI can detect features in images
by itself. Therefore, in this study, the deep learning (Chollet,
2017) is used to determine the presence or absence of a de-
fect in images as shown in Figs. 3 and 4. In deep CNN, the
weights in the neural network are determined using the back
propagation method. As CNN has been thoroughly examined
in many literatures, we will not go into its detail in this paper.

The CNN architecture used in this analysis can be seen in
Table 1. This study focuses on determining the presence
or absence of defects only. In other words, the problem
to be solved is a two-classification problem. Therefore, the
structure of the deep network is relatively simple, as shown
in Table 1. As shown in this Table, the input image size
is 224×224 and the presence or absence of a defect is de-
termined in the output of this CNN. The sparse categorical
crossentropy is used for the loss function and Adam for the
optimiser. The softmax function was used for the activation
function in the output layer and the ReLU function for the
rest. The ReLU function is an output function with an output
of zero if the input value is less than or equal to zero and as
is if the input value is greater than zero. As hyperparameters,
a learning rate of 0.001 and a weight decay for regularisa-
tion of 0.0001 are given. A hold-out method was used for
training, where 80% of the total data was used for training
and the remaining 20% was used for validation. The mini-
batch size was 32 and the training epoch was 32. The total
number of LUVT images prepared was 14856. Nvidia GPU
Geforce3090RTX with 24GB memory is utilized for CNN
calculations.

5. DEEP LEARNING RESULTS

Some deep learning results are shown in this section.

Table 1. CNN architecture used in the section 5.

Layer(type) Output Shape Param.
Conv2D (None,224,224,64) 640
Conv2D-1 (None,224,224,32) 18464
MaxPool.2D (None,112,112,32) 0
Conv2D-2 (None,112,112,16) 4624
MaxPool.2D-1 (None,56,56,16) 0
Dropout (None,56,56,16) 0
Flatten (None, 50176) 0
Dense (None, 128) 6422656
Dense-1 (None, 2) 258
Total Params.: 6446642 　　　　　　
Trainable Params.: 6446642 　　　　　　
Non-trainable Params:0 　　　　　　

Figure 5. Trends in losses to learning epochs.

5.1. Learning results

First, the deep learning for the neural network architecture
in Table 1 is carried out for the LUVT images as shown in
Figs. 3 and 4. Fig. 5 and 6 show the loss and accuracy re-
sults for the learning epochs, respectively. In this calculation,
the training and validation schemes are early finished using
early-stopping. In these figures, the solid blue and red lines
indicate the results for training and validation respectively.
The loss described here is a measure of the certainty of the
deep learning model that is being trained. On the other hand,
it should be noted that accuracy is a measure of whether a
given image has been classified correctly, and that accidental
correct decisions may be included in this accuracy.

The results in Fig. 5 show that the value of the loss decreases
as the learning epoch progresses. On the other hand, as shown
in Fig. 6, the corresponding accuracy values are higher. From
the above, it can be concluded that the deep learning model
was generally created correctly.
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Figure 6. Trends in accuracy to learning epochs.

5.2. Test for unlearning LUVT data

The deep learning model created in this study is then tested
with a series of untrained time-series image data to evalu-
ate its ability to correctly determine the presence or absence
of defects. The number of unknown time-series image data
used in this test is 660. At approximately the 400 time step,
the presence or absence of a defect can be visually confirmed
by an inspector. Fig. 7 shows the time steps of the time se-
ries images and the probability of the presence of a defect
predicted by the deep learning model. As shown in Fig. 7,
we can observe that the probability of the defect presence is
correctly predicted as zero up to around 400 time steps. Af-
ter that, the probability increases, indicating that the presence
of a defect is generally predicted correctly, except for some
sections.

5.3. Confusion matrix

As mentioned in the previous section, the predicted out-
comes may include those that could have been predicted by
chance. Therefore, the confusion matrix with TP(true pos-
itive), FP(faulse positive), FN(faulse negative) and TN(true
negative) is investigated in this section. Table 2 shows the
confusion matrix for the test results performed on a set of
untrained time series images. In Table 2, ”Actual” indicates
whether a defect is present (defect) or not (no defect), while
”Predicted” indicates the result predicted by the AI for a given
image (defect or no defect). As shown in Table 2, there were
148 cases where a defect-free image was incorrectly identi-
fied as having a defect. However, the AI misclassified im-
ages containing defects as defect-free in only 6 cases. In non-
destructive testing, overlooking defects can lead to critical ac-
cidents. In that sense, a small FN (false negative), as shown
in Table 2, can be considered an acceptable result.

Figure 7. Relation between time-step number and existence
probability of a defect.

Table 2. Confusion Matrix

Predicted
defect no defect

Actual defect 44(TP) 6(FN)
no defect 148(FP) 462(TN)

6. CONCLUSION

In this paper, we presented our approach for automatic de-
fect detection in concrete materials using deep learning and
LUVT. Our results demonstrated that the deep learning-based
AI can accurately detect the presence or absence of a defect in
concrete materials with an accuracy of over 75%. However,
our results show that the probability of defect detection by the
deep learning-based AI is not always sufficient. The factors
that make LUVT experiments challenging in concrete are the
multiple scattering of ultrasonic waves by aggregates and the
rapid attenuation of them compared to homogeneous metals.
Indeed, when the target material for LUVT experiments is
steel or aluminum, it is relatively easy to visually confirm the
generation of scattered waves. On the other hand, it can often
be challenging to visually confirm even the scattered waves
caused by a defect, and making it difficult to create accurate
and reliable training data.

Therefore, in the future, to improve the accuracy of the deep
learning model, additional LUVT experiments are planned to
be conducted to increase the training data as shown in Figs.
3 and 4. However, preparing a large number of concrete
specimens, creating various artificial defects, and conduct-
ing LUVT experiments on them require significant effort and
cost. To overcome the difficulty, we will explore the use of
transfer learning with simulated image data generated using
numerical methods such as the finite difference time-domain
(FDTD) and finite element method (FEM). Furthermore, we
plan to use GAN(Goodfellow et al., 2014) to detect a defect in
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LUVT images of concrete materials containing aggregates. In
this study, human annotators are responsible for labeling the
presence or absence of a surface defect in the training data.
However, determining the presence of a defect in LUVT im-
ages for concrete materials proves to be challenging for hu-
man observers. Consequently, creating a learning model ca-
pable of handling such noisy training data(Song, Kim, Park,
Shin, & Lee, 2022) is also future research challenge.
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