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ABSTRACT 

IIoT and connected devices can continue to use smart 

equipment and improve access to data. While the data 

collected by sensors has been an invaluable asset to 

companies, the ability to understand and use this data to drive 

new insights. The development of CM technology and 

CMMS in power generation systems provides a validated set 

of operation and maintenance data with abundant event data. 

Maintenance decision-making is primarily based on 

equipment reliability and performance-based features for 

diagnosing equipment failure. The most critical asset and 

often reduces the reliability and availability of a CFSPP with 

the most frequency of disturbances is the steam boiler. As a 

departure from the idea of creating a integration concept, this 

article will focus on analyzing equipment health conditions 

and finding causes of failure of the tools, utilizing data for 

diagnostic purposes. Real-case used in this research are steam 

boilers, which are important assets in power plant generation. 

The online sensor and FMEA module data will be combined 

to realize the concept of anomaly diagnosis which is driven 

by hybrid data. Hoping that accurate diagnosis results can be 

obtained and be used to analyze the causes of failure and 

decrease in equipment performance resulting by a decrease 

of energy efficiency performance. The analytical approaches 

are carried out to have the goal of generating detection 

models and diagnostic insights of event data based on 

operational data and FMEA. 

Keywords:  Detection, Diagnostics, Random Forest, FMEA, 

CMMS, Maintenance 

1. INTRODUCTION 

Industry 4.0 involves direct collaboration in the technological 

revolution where machines and managers must make 

decisions that involve a huge amount of data and 

customization in the manufacturing process. Predicting when 

assets require maintenance is a major challenge in this 

context. The ability to perform predictive maintenance can 

help improve machine downtime, cost, control, and 

production quality (Zonta et al., 2020). Maintenance 

management is now becoming more automated and 

knowledge-based, with decision support systems playing a 

key role with help of new technology of Cyber-physical 

production systems (CPPS) shifting maintenance 

management from descriptive to prescriptive approaches 

(Ansari et al., 2019). The integration of Industrial Internet of 

Things (IIoT) with digital twin technology and Computerized 

Maintenance Management Systems (CMMS) can enable 

organizations to collect and analyze real-time data to 

optimize their operations, reduce downtime, and improve 

safety. The use of FMEA (Failure Mode and Effects 

Analysis) can further enhance this strategy by providing a 

prioritized list of potential failure modes, which can guide 

maintenance efforts and reduce the likelihood of downtime 

or equipment failure (Nemeth et al., 2018).  

The concept of data analysis on power plant operating sensors 

itself has taken various machine learning (ML) techniques to 

detect failures and emission prediction reduction in power 

plant equipment such as BPNN, SVM, Random Forest and 

various other algorithms (Dhini et al., 2017; Li et al., 2020; 

H. Wang et al., 2019). By integrating this detection method 

as a benchmark for diagnosis with failure events using FMEA 

(Bhattacharjee et al., 2020), the implementation of preventive 

maintenance which also towards prescriptive is no longer 

impossible. 

Although the potential for commercial success of IoT has 

been extensively researched, the same cannot be said for 

IIoT, particularly within the engineering sciences. Currently, 

IIoT research is in its early stages (Onu & Mbohwa, 2021), 

and there is a lack of theoretical understanding when it comes 

to the acceptance and use of IIoT technology. Additionally, 

there is a gap in the literature when it comes to examining 
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IIoT applications, prospects, and reviews, as these areas have 

been largely overlooked in existing research. Digital 

transformation faces numerous obstacles, whereas the 

various taxonomies and lists of these barriers have been 

proposed. Extensive literature (Jones et al., 2021) reviews on 

the subject have yielded several categorizations of these 

barriers, often ranked in terms of their level of significance or 

the difficulty of overcoming them. 

To reduce the gap for these technologies, this paper approach 

is to analyze integration between the documents provided by 

industry which become legacy of the industry with data 

sensor analysis in hope of implementing the prescriptive 

maintenance reference model. This paper will talk about the 

analysis of operational data sensors using ML Random Forest 

and documents of FMEA provided by the Power plant 

Industry. This analysis specifically targets steam boilers, 

which have emerged as one of the most crucial components 

in coal-fired steam power plants due to their high downtime 

rates compared to other equipment in such power plants 

(Mohanty et al., 2020). 

2. EQUIPMENT MONITORING TECHNOLOGY 

One application of IIoT technology is the use of digital twins. 

CMMS can be integrated with digital twins to provide a 

comprehensive view of equipment performance. This 

integration can enable data-driven analysis and decision-

making, as well as proactive maintenance and repair. FMEA, 

which also could be provided in CMMS, can be used to 

analyze data generated by digital twins and sensors to identify 

potential failure modes of equipment which also define the 

right way to measure the strategy of pro-active and corrective 

maintenance (Errandonea et al., 2020). By combining FMEA 

with CMMS and digital twins, organizations can create a 

comprehensive maintenance strategy that prioritizes 

preventive maintenance based on criticality. 

2.1. Intersection of IIoT and Digital Twin in Industry 

The IIoT is revolutionizing the way organizations manage 

their assets and operations. By connecting devices, machines, 

and sensors to the internet, IIoT technology can collect and 

analyze real-time data that can be used to optimize 

operations, reduce costs, and improve safety. Meanwhile, 

Digital Twin technology involves creating a virtual replica of 

physical equipment, machines, or systems to model, monitor, 

and optimize their behavior and performance. This 

integration enables industrial processes to be monitored and 

optimized in real-time which can be achieved by collecting 

real-time data from IIoT devices fed into Digital Twins to 

simulate the behavior of the physical equipment and 

machinery, enables companies to identify potential problems 

and optimize their processes to improve efficiency, reduce 

downtime, and minimize maintenance costs.  

Industries have been using the Digital Twin (DT) paradigm 

for years to decrease the risks associated with their assets and 

enhance traceability, maintenance, and analysis to improve 

the asset's overall life cycle. This technology also can be 

applied to a single asset and its performance, or to more 

complicated systems such as production or services, where 

multiple components with varying behaviors are involved 

(Hlady et al., 2018; Shubenkova et al., 2018). IIoT can be 

used as a container in data analysis where data can be 

recorded and analyzed directly to detect the type of matching 

patterns associated with failures in the field.  

2.2. Integration of CMMS and FMEA 

CMMS are designed to help organizations manage their 

maintenance operations more effectively. They can be used 

to schedule and track preventive maintenance tasks, manage 

work orders, and track inventory. CMMS is designed to help 

businesses streamline their maintenance processes, reduce 

equipment downtime, and optimize maintenance costs. It 

typically includes features such as predictive maintenance, 

preventive maintenance, and reactive maintenance. 

While FMEA is a method used to identify and prioritize 

potential failure modes of a system or process. FMEA is a 

systematic approach that evaluates, measures, and minimizes 

potential risks related to different aspects of a design. It 

involves a risk assessment process that identifies which 

features or failure modes could impact the quality of the 

product as perceived by the customer, regardless of their 

position in the supply chain. The main objective of FMEA is 

to determine how these risks can be mitigated (Kent, 2016).  

The incorporation of CMMS and FMEA in power plants can 

provide numerous benefits, such as enhanced equipment 

reliability, reduced downtime, and increased safety for 

workers and the community nearby. By adopting a proactive 

approach to maintenance management and utilizing FMEA 

data to guide maintenance schedules and equipment 

replacement decisions, power plants can reduce the 

likelihood of unforeseen downtime and expensive equipment 

failures. This can lead to considerable cost savings over time 

while guaranteeing the plant operates safely and efficiently. 

Consequently, the intersection of CMMS and FMEA is a vital 

research and development field for power plant operators, 

holding great potential to significantly impact the entire 

industry. FMEA will also become a reference determining the 

root causes of failure starting from causes and effects to how 

to solve these problems. Root caused Failure Analysis 

(RCFA) will be a benefactor in determining proactive and 

corrective maintenance strategies.  

2.3. Combination of IIoT and CMMS 

The process typically involves collecting data from various 

sources, analyzing it to identify potential issues, using FMEA 

in CMMS database to further analyze these issues and 

identify potential failure modes, and then taking proactive 

and corrective action to address any identified issues. Figure 
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1 shows the concept mapping of how to combine analysis 

online sensor data and FMEA. 

 
Figure 1. Mapping concept of combination in data sensor 

and FMEA 

This integration of failure learning combines sensor data 

recorded online and FMEA document data that is used 

officially by the relevant industry as a reference in 

maintenance. In generating a maintenance strategy in 

CMMS, Knowledge-based maintenance (KBM) learning 

starts from FMEA which provides details of failure modes 

related to event conditions stored in the history log. these 

incidents are inspected in person for the appropriate type of 

failure. List of potential Failure Mode is found by field 

expertise which provides an overview of the types of failure 

mechanism and how to deal with them with proactive and 

corrective maintenance. Whereas in the data analysis 

approach, data stored online will be analyzed with a detection 

algorithm to find out which sensors provide various patterns. 

This pattern can be matched with the failure event conditions 

so that information can be drawn as a basis for failure 

analysis, starting from the location, type of equipment, and 

various other information related to failure conditions. 

2.4. Feature Importance in CART ensemble RFC 

Decision Tree or tree-based models are algorithms that divide 

a dataset using a tree-like structure. The concept behind 

decision trees is to split the data based on certain conditions, 

which are represented as branches in the tree. There are 

several algorithms for decision trees, including ID3, which is 

based on entropy values, and classification and regression 

trees (CART), which is based on Gini values. 

Decision tree using the impurity method or CART is a 

decision tree algorithm, in addition to ID3, which explains 

the generation of binary decision trees (Breiman et al., 2017). 

The formula for finding impurity values in the CART 

algorithm is shown in Eq. (1). 

Gini(𝐷) = 1 − ∑ 𝑃𝑖
2𝑚

𝑖=1  (1) 

Where Pi is the probability value of a tuple D belonging to a 

certain class, and m is the total number of class labels. The 

Gini index considers binary separation for each attribute. 

Binary separation requires calculating the weighted sum of 

the impurity of each partition produced. The value of the Gini 

index is shown in Eq. (2). 

GiniA(D)  =
|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷1) +

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷2) (2) 

Random forest classifier (RFC) is a type of ML algorithm 

used for classification tasks. It is a collection of decision trees 

that work together to make predictions by taking a vote from 

all the decision trees in the forest (Breiman, 2001). The 

selection of the feature to initiate the split at a particular node 

is typically based on the increase in purity in the resulting 

nodes. Purity refers to the degree of class homogeneity at a 

specific node, which, for example, can be measured by the 

proportion of cases versus controls. A node with a higher 

proportion of one class is considered to be purer (Musolf et 

al., 2022). Each decision tree is trained on a random subset of 

the input features and samples from the training data. This 

randomization helps to reduce overfitting and increase the 

accuracy of the classifier. When making a prediction, each 

decision tree in the forest independently classifies the input, 

and the final prediction is based on the majority vote of all 

the decision trees. RFC is commonly used in various fields 

such as finance, medicine, and engineering for tasks such as 

fraud detection, disease diagnosis, and image classification. 

There are various methods for calculating feature importance 

in random forest (RF), and one of them is the Gini 

importance. At each node, the Gini index, which measures 

node purity, is assigned to each feature to determine which 

feature to use for splitting. These Gini indices can be 

averaged across all nodes and trees to determine the Gini 

importance of a feature in the analysis. 

Feature importance is determined by the reduction in node 

impurity, which is weighted by the probability of reaching 

that node. The probability of reaching a node can be 

calculated by dividing the number of samples that reach that 

node by the total number of samples. A higher value of 

feature importance indicates that the feature has a greater 

impact on the analysis. The importance of a feature is 

determined by calculating the total reduction in the criterion 

(which has been normalized) that results from the inclusion 

of that feature. It is also known as the Gini importance. To 

determine feature importance in each decision tree, the Gini 

Importance is calculated by computing the importance of 

each node in the tree. This method assumes that only binary 

trees, which have two child nodes, can be used to calculate 

the importance of a node, as shown in Eq. (3). 

𝑛𝑖𝑗 = 𝑤𝑗𝐶𝑗 − 𝑤𝑙𝑒𝑓𝑡(𝑗)𝐶𝑙𝑒𝑓𝑡(𝑗) − 𝑤𝑟𝑖𝑔ℎ𝑡(𝑗)𝐶𝑟𝑖𝑔ℎ𝑡(𝑗) (3) 

Where nij is the importance of node j, while wj is weighted 

number of samples reaching node j, and Cj is the impurity 

value of node j. The right and left on this equation stand for 

the child node on node j from the right split and left split 

respectively. The importance for each feature on a decision 

tree is then calculated which is shown in Eq. (4). 
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𝑓𝑖𝑖 =
∑ 𝑛𝑖𝑗𝑗:𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

∑ 𝑛𝑖𝑘𝑘∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠

 (4) 

Where fii is the importance of feature i and nij is the 

importance of node j. To obtain a normalized importance 

value for a feature between 0 and 1, divide the feature's 

importance value (fii) by the sum of all feature importance 

values. The final feature importance value at the Random 

Forest level is calculated by taking the average of the feature 

importance values across all the trees. This is achieved by 

calculating the sum of the feature's importance value for each 

tree and then dividing it by the total number of trees. 

3. DETECTION AND DIAGNOSIS USING FMEA AND RFC 

To understand and analyze the existing problems, a literature 

review related to failures occurring in steam boilers and how 

to diagnose these failures based on steam boiler parameter 

data was conducted. A diagnosis will be made and connected 

to the failure modes described in the FMEA document, so a 

literature review on the FMEA document implemented by the 

industry is required. 

3.1. Failure Event Selection 

Generating a dataset for classification and labeling failure 

modes can be a challenging task when the system is not well 

understood. This challenge becomes more complex in 

situations where there are multiple failure modes and the root 

cause of the failure is not clear. In such situations, expert 

knowledge of the system can be useful in analyzing data from 

real systems. Event history logs can also be helpful in 

determining the possible failure modes of components. 

However, in the case of the Boiler, the logs only provide the 

name of the failed component without specifying the failure 

mode. The frequency of failures due to leakage is the highest 

among all the components with more than 480 hours 

throughout 2019 and 2020 in the steam boiler system, as 

shown in Figure 2. 

 

Figure 2. Total hours of event in Boiler 

It can be inferred from the general trend that boiler leakages 

are the most frequent occurrence. The event data obtained is 

the ground truth data from the translation of historical data 

obtained from the REOC, which is used to provide 

information on the occurrence of leak failures in each 

segment. The event data will serve as a distinguishing label 

between different types of incidents. From the obtained data, 

there are three types of failure incidents that occurred 

throughout the data. Figure 1 shows the list of event incident 

related to leakage in boiler with scattered plot sensor value of 

boiler furnace pressure. 

 

Figure 3. Scatterplot of Sensor of boiler furnace Pressure 

with 3 events leakage. 

There are 3 events of leakage in boiler amounting to 17286 

minutes (288 hours) with status of performance as derating 

and outage in unit #5 in October 2019 through march 2020. 

These events become ground truth label in data analysis. The 

3 labels class of event mentioned in Table 1. 

Table 1 Log History of Failure Event 

Label Event Description 

Normal Normal State / Not in described event failure  

C1 Leakage in Secondary Superheater Zone 

C2 Leakage in Convection Pass Wall 

C3 Leakage in HCP Primary Superheater 

3.2. Sensor Operational in Steam Boiler 

The sensor data obtained is data from the operating sensors 

taken from coal-fired steam power plant Unit #5, which has 

a total of 437760 rows and 42 sensor columns. Out of the 42 

operating sensors taken, there are 15 selected sensors 

referenced in various studies on the use of sensors for boiler 

pipe leakage using model-based detection (Y. Wang & Yin, 

2017; Yin & Wang, 2015) and coordinated by the subject 

matter expert (SME) from the related power generation 

industry to determine the occurrence of leakage failure in the 

steam boiler. Table 2 shows the list of sensors provided and 

taken into analysis. 

Table 2. List of sensors for analysis 

No. Name of sensor 

1 Boiler Furnace Pressure 

2 Boiler Steam Drum Pressure 

3 Boiler Total Coal Flow 

4 
Booster Boiler Feed Pump-Turbine (BFPT)-A Outlet 
Pressure 
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5 
Booster Boiler Feed Pump-Turbine (BFPT)-B Outlet 
Pressure 

6 Economizer Inlet Flue Gas Temperature 

7 Economizer Outlet Flue Gas Temperature 

8 
Primary Superheater (PSH) Inlet Steam Side A 
Temperature 

9 Primary Superheater (PSH) Inlet Steam Side B Temp. 

10 Primary Superheater (PSH) Outlet Steam Side A Temp. 

11 Primary Superheater (PSH) Outlet Steam Side B Temp. 

12 Secondary Superheater (SSH) Inlet Steam Side A Temp. 

13 Secondary Superheater (SSH) Inlet Steam Side B Temp. 

14 Riser to Steam Drum Side A Water Temperature 

15 Riser to Steam Drum Side B Water Temperature 

This sensor will indicate the detection of location and each 

part of equipment which will be detected with ML algorithm 

method. 

3.3. Failure Mode Analysis Offline Monitoring 

The FMEA document utilized in the industry under 

observation is a compilation of the failures and their causal 

analysis. However, it fails to provide a comprehensive 

explanation of the consequences of these failures, 

necessitating more detailed information on the failure modes 

and the methods of controlling them through the SME. The 

SME provide in-depth information regarding failure types, 

based on the inspection outcomes, and the appropriate 

proactive and reactive measures to be taken to address them. 

The FMEA document includes instructions on how to 

observe and manage the failures, as it is designed exclusively 

for inspection purposes.  

The inspection process is conducted based on various 

condition monitoring standards, which can be implemented 

while the machine is either in operation or shutdown mode. 

List of FMEA module focusing on provided damage status 

and offload plan is shown in Table 3. The failures list has 

been limited based on the described event of failure incidents 

and the extent of the resulting damages. 

Table 3. FMEA document focusing on related information 

Failure 
Location 

Failure 
Modes 

Damage 
Status 

Offload 
Plan 

Downcomer 

Mechanical 
Fatigue 

Incipient VT=>MT/PT 

Welding 
Flaws 

Event-
Based 

QA/QC, Strict 
adherence to procedures 

Secondary 
Superheater 
Tube and 
Header: Inlet 
Bank 

Fly Ash 
Erosion 

Active 
CFD Modeling w/flow 
modification 

Rubbing/ 

Fretting 
Active 

VT=>UT (Meter or 

Weld Gauge) 

Soot blower 
Erosion 

Incipient 
VT =>UT  or EMAT 
(Tubing only) 

Low-
Temperature 
Creep 

Incipient 
VT=>Hydrostatic 
Testing, MT  

Chemical 
Cleaning 
Damage 

Event-
Based 

QA/QC, UT => tube 
sampling 

Mechanical 
Fatigue 

Incipient VT=>MT/PT 

Welding 
Flaws 

Event-
Based 

QA/QC, Strict 
adherence to procedures 

Long-Term 
Overheating/ 
Creep 

Incipient UT => Tube sampling 

Convection 
Pass Front 
Wall: Tubing 

Mechanical 
Fatigue 

Active VT=>MT/PT 

Welding 
Flaws 

Event-
Based 

QA/QC, Strict 
adherence to procedures 

 

There are multiple types of mechanical fatigue failures that 

can occur, whether in an active or incipient state. During an 

inspection, various conditions are reviewed with a offload-

plan for the equipment to provide information on the 

appropriate failure mode in accordance with the monitoring 

procedure. 

3.4. Proposed Model for Maintenance Decision Analytic 

This research is directed towards conducting diagnostic 

analysis of the selected boiler operation sensor values to gain 

insights into failure events. To diagnose the occurrence of 

boiler leakage failure events, ML methods will be used to 

determine which selected boiler operation sensors influence 

the failure.  

The resulting ML output in the form of a list of operation 

sensors will be analyzed to determine the location and 

mechanism of the failure event. this list of sensors will also 

be recommended to SME and re-researched at the R&D 

department at the specified Power Plant later.  Figure 4. 

Illustrates the concept of how acquired sensor data will be 

processed and the obtained information stored into the 

database. 

 

Figure 4. Processed sensor data into digital FMEA  

 

While this step will be conducted by concerned staff and 

technicians. This paper will contribute the analysis of 

obtained sensor data through the list of feature importance 

random forest output of list sensor to estimate the type of 

failure mode based on the previously designed FMEA.  

Figure 5 illustrates the research flow chart for creating 

diagnostic models on the data. The result will be used to give 

recommendation relating of how to update FMEA based on 

sensor diagnostic to subject matter expert whether result of 

the list data sensor could be compatible to failure modes or 

not. 
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Figure 5. Flowchart of diagnostics Steam Boiler Data. 

 

4. RESEARCH RESULTS AND DISCUSSION 

The study starts by performing a descriptive analysis of the 

data using the Exploratory Data Analysis (EDA) method, 

where only statistical values, histograms, and box plots are 

included. Next, a diagnostic analysis is carried out utilizing a 

classification ML algorithm. The preprocessed data is 

utilized to train the random forest ML algorithm, which 

provides diagnostic insights. These diagnostic insights will 

serve as the foundation for mapping the failure modes of 

FMEA. 

4.1. Exploratory Data Analysis and Data Preprocessing 

The statistical method is applied to determine whether the 

readings of a sensor are normal or provide an understanding 

of how to group the operational data of sensors into labeled 

categories, such as normal class and event occurrences. The 

statistical values of 15 sensors used in a boiler are presented 

in Table 4. 

Table 4. Statistical analysis and blank values on sensor data 

No Data Sensor mean Min 50% max Null 

1 Boiler.Furnace 
Pressure 

-10.99 -250.34 -11.30 113.36 0 

2 Boiler Steam 
Drum Pressure 

153.66 0.08 173.49 185.33 0 

3 Boiler Total 
Coal Flow 

226.75 0.00 255.00 332.84 0 

4 Booster BFPT 
A.Outlet 
Pressure 

19.69 3.99 21.40 23.02 0 

5 Booster BFPT 
B.Outlet 
Pressure 

19.66 2.66 21.19 22.59 0 

6 Economizer 
Inlet Flue Gas 
Temperature 

419.00 419.00 419.00 419.00 0 

7 Economizer 
Outlet Flue 
Gas 
Temperature 

352.09 30.33 381.60 430.81 0 

8 PSH Inlet 
Steam Side A 
Temperature 

373.59 37.33 398.68 451.87 0 

9 PSH Inlet 
Steam Side B 
Temperature 

377.56 34.01 402.45 561.37 0 

10 PSH Outlet 
Steam Side A 
Temperature 

344.75 38.19 369.79 424.58 0 

11 PSH Outlet 
Steam Side B 
Temperature 

341.10 35.91 365.19 433.97 0 

12 Riser To Steam 
Drum Side A 
Water 
Temperature 

327.11 34.45 353.05 358.31 0 

13 
Riser To Steam 
Drum Side B 
Water 
Temperature 

326.49 33.83 352.64 357.77 0 

14 
SSH Inlet 
Steam Side A 
Temperature 

374.67 36.35 399.70 464.43 0 

15 
SSH Inlet 
Steam Side B 
Temperature 

374.74 36.46 399.68 474.01 0 

 

All of the sensor data in Table 4 have complete records with 

437760 data samples and no null values. The statistical 

analysis shows that the Economizer Inlet Flue Gas 

Temperature sensor has consistent mean, median, min, and 

max values of 419, indicating that there is no significant 

difference in its readings across different events. Sensor 

values that do not have this difference will be removed from 

the sensor list because their values do not provide insight into 

further analysis. 

The diagnostic analysis of the data involves using labels 

derived from the ground truth, and involves adjusting the data 

for events classified as class 1, 2, and 3. The technique to 

remove noise is done by first removing the failure event label, 
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then detecting outliers in the normal label data using the 

interquartile range rule and removing those outliers. 

Afterwards, the event label data is merged back into the blue 

normal label data. A scatterplot visualization of the boiler 

furnace pressure sensor data that has been processed to 

remove noise and standardized using the ground truth label is 

depicted in Figure 5. 

 

Figure 6. Scatterplot furnace pressure preprocessed data. 

4.2. Detection Model Build 

In creating the Data detection model, all 14 operating sensors 

were used to create the next diagnostic model. The diagnostic 

model is designed to detect leak failure events based on 

anomaly values in the sensors and classify them into normal 

class, class 1, class 2, and class 3. The model score resulting 

from the event class diagnosis with the RFC model is shown 

in Table 5. 

Table 5. Confusion Matrix of Detection RFC 

 

The detection model created using the RFC algorithm with  

Gini criterion has an accuracy of 91.63%. However, it has a 

weakness in detecting class 1, as the precision of the model 

for class 1 is only 84.18%. Out of 1191 test data samples for 

class 1, 931 were correctly classified as class 1, while 130 

were misclassified as class 2 and 45 were misclassified as 

class 3. The model's lowest sensitivity was found for class 2, 

where out of 983 data samples predicted for class 2, 823 were 

correctly detected, 130 data samples labeled as class 1 were 

detected as class 2, and 30 data samples labeled as class 3 

were detected as class 2. The model's low sensitivity for class 

2, which is only 83.72%, resulted in the F1 score for class 2 

being the lowest at 86.23%. 

4.3. Diagnostic Model Build 

The ML model generated will provide insights in selecting 

sensors that have an impact on boiler leak failure. Each event 

will undergo diagnostic analysis to determine the type of 

failure mode that can be predicted, based on which sensors 

influence the boiler leak failure event. There are three failure 

events, resulting in three diagnostic results to determine 

which sensors will be used in the FMEA mapping for each 

event. The diagnostic outcomes for each event category are 

presented as follows: 

4.3.1. Boiler leakage in the Secondary Superheater Zone. 

The class 0 or normal class data has 351,437 data samples 

and the class 1 data has 6,117 data samples. The ratio of class 

1 to class 0 data is close to 1:99, which requires sample 

adjustment. The sample adjustment method used is random 

under sampling (RUS). The diagnostic results of the RFC 

presented the feature importance values on the random forest 

model for each boiler operational sensor for class 1 label, as 

shown in Table 6. 

Table 6. Top 5 feature importance value on class 1. 

No. Steam Boiler Sensor Percentage Cumulative 

1 Booster BFPT A Outlet Pressure 28.17% 28.17% 

2 Booster BFPT B Outlet Pressure 19.09% 47.26% 

3 Boiler Total Coal Flow 11.98% 59.24% 

4 
Riser To Steam Drum Side B 
Water Temperature 

10.88% 70.12% 

5 Boiler Steam Drum Pressure 8.90% 79.02% 

From the diagnostic results of class 1 event on the operation 

sensors, it is found that the sensors that have the most 

influence on the occurrence of boiler leakage in the secondary 

superheater zone are the pressure sensors of booster BFPT 

output pumps A and B, followed by the total coal flow sensor, 

the water temperature sensor in the riser to steam drum 

section B, the pressure sensor in the steam drum, and the 

subsequent sensors with top 5 cumulative percentage 

amounting to 79,02%. 

4.3.2. Boiler leakage in the Convection Pass Wall Zone. 

Class 0 data or normal class has 351437 data samples and 

Class 2 data has 4915 data samples. With the same conditions 

as class 1, the comparison of the amount of data for class 2 

and class 0 which is close to 1: 99 requires a sample 

adjustment. The sample adjustment method used is RUS. 

From classes that have been balanced, the number of normal 

class samples is 4915 data. The diagnostic results of the RFC 

presented the feature importance values on the random forest 

model for each boiler operational sensor for class 2 label, as 

shown in Table 7. 

 

 

Normal Class C1 C2 C3

Normal Class 983 0 0 0

C1 10 931 4 38

C2 0 130 823 30

C3 0 45 72 866

Normal Class C1 C2 C3

98.99% 84.18% 91.55% 92.72%

100.00% 94.71% 83.72% 88.10%

99.49% 89.13% 87.46% 90.35%F1-Score

Accuracy 91.63%

Data 

Prediction

Confusion Matrix
Data Test

Summary

Precision

Recall
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Table 7. Top 5 feature importance value on class 2. 

No. Steam Boiler Sensor Percentage Cumulative 

1 
Riser To Steam Drum Side-A 
Water_Temperature 

17.23% 17.23% 

2 
Riser To Steam Drum Side-B 
Water Temperature 

17.00% 34.23% 

3 Booster BFPT-A Outlet Pressure 15.00% 49.24% 

4 Boiler Steam Drum Pressure 14.05% 63.29% 

5 Boiler Total Coal Flow 13.04% 76.33% 

Based on the diagnostic results of the class 2 incident on the 

operation sensor, it was found that the sensor that most 

influenced the occurrence of boiler leakage in the convection 

pass wall zone was the temperature sensor on the riser to 

steam drum Side-A and B, followed by the value of the 

Booster BFPT-A outlet pressure sensor, the steam drum 

pressure, and the next sensor with top 5 cumulative 

percentage amounting to 76,33%. 

4.3.3. Boiler leakage in the High Convection Pass PSH 

Zone. 

Class 0 data or normal class has 351437 data samples and 

Class 3 data has 6254 data samples. Under the same 

conditions as before, the comparison of the number of class 

3 and class 0 data which is close to 1: 99 requires a sample 

adjustment. The sample adjustment method used is RUS. 

From classes that have been balanced, the number of normal 

class samples is 6254 data. The diagnostic results of the RFC 

presented the feature importance values on the random forest 

model for each boiler operational sensor for class 3 label, as 

shown in Table 8. 

 

Table 8. Top 5 feature importance value on class 2. 

No. Steam Boiler Sensor Percentage Cumulative 

1 
Riser To Steam Drum Side-B 
Water Temperature 

17.13% 17.13% 

2 
Riser To Steam Drum Side-A 
Water Temperature 

15.34% 32.47% 

3 Boiler Steam Drum Pressure 13.13% 45.60% 

4 Booster BFPT-A Outlet Pressure 13.00% 58.60% 

5 Boiler Total Coal Flow 12.12% 70.72% 

According to the diagnostic analysis result of the Class-3 

incident on the operation sensor, it was found that the 

temperature sensors on the riser to steam drum sides A and B 

had the greatest impact on the occurrence of boiler leakage in 

the Header zone of the convection pass wall. Subsequently, 

the steam drum pressure, the outlet pressure sensor value of 

Booster BFPT A, the total coal flow rate of the boiler, and the 

following sensors were also found to have an influence. Top 

5 cumulative percentage amounting to 76,33%. 

4.4. Diagnostic Discussion with FMEA and Recommen-

dation Mapping 

The diagnostic results show that the most influential sensors 

on boiler leakage incidents are temperature sensors for the 

riser to steam drum and steam drum pressure sensors, among 

others. The FMEA mapping based on inspection and SME 

validation indicates that the leakage incidents are caused by 

mechanical fatigue in the SSH, CPW, and HCP PSH areas. 

The inspection and repair priority for the SSH and CPW areas 

are categorized as IPI B, which requires repairs to be done 

within 24 hours to 6 days. The HCP PSH area also falls under 

IPI B. Specific sensors are needed to differentiate failure 

incidents in the Downcomer and Riser to Steam Drum areas. 

FMEA and Recommendation mapping is presented in Table 

9.  

Sensor Data-Driven 
Analysis Failure 

Mode 

Recommendation 

Sensor ID Event Data Corrective Proactive 

SSH Inlet 

Super 
Heater  

Side A & 

Side B 

Boiler 
leakage in 
the 
Secondary 
Superheater 
Zone 

Mechanical 
Fatigue 

Fixed/ 
restored the 
thickness 
on the SSH 
location 
pipeline 

Schedule 
inspection
s and look 
for the 
root cause 
of leak 
failures 

Riser to 

Steam 
Drum 

Boiler 
leakage in 
the 
Convection 
Pass Wall 
Zone. 

Mechanical 
Fatigue 

Repair / 
restore the 
thickness of 
the CPW 
location 
pipe 

Schedule 
inspection
s and look 
for the 
root cause 
of leak 
failures 

Riser to 

Steam 

Drum 

Boiler 
leakage in 
the High 
Convection 
Pass PSH 
Zone 

Mechanical 
Fatigue 

Repair / 
restore the 
thickness of 
the HCP 
location 
pipe 

Schedule 
inspection
s and look 
for the 
root cause 
of leak 
failures 

 

5. CONCLUSION AND RECOMMENDATION 

5.1. Conclusion 

The analysis of operation parameter sensor data and event 

data correlation with FMEA has led to the development of a 

more advanced prescriptive analysis diagnosis model from a 

conventional model.  

A. The operation sensor data contains various anomalous 

values that can be separated using the interquartile range, 

but it cannot be validated due to the lack of support from 

manually recorded event data. Therefore, other 

approaches are needed in the analysis for this diagnosis 

purpose. 

B. The diagnostic model for the boiler operation data, 

which includes 15 sensor data sets and ground truth data 

for each event, has a high level of accuracy approaching 

100% when using various data approaches. However, for 

the model that includes failure event data as a whole, it 

cannot be perfectly distinguished based on the precision 
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value of the classification model because the failure data 

from each class has similar characteristics, so the model 

as a grouping of each class still needs to be considered. 

C. In the operational sensor data, failure modes can only be 

identified by referring to the FMEA TBM module and 

adjusting with the level of inspection priority (IPI). Since 

the IPI level for each recorded leakage failure event is 

more than 6 hours and all failure events result in outage 

status, the designated IPI level is close to level A, which 

indicates that the type of failure must be immediately 

addressed and requires significant repair time, namely 

mechanical fatigue for all failure events. 

5.2. Recommendation 

Before the era of Industry 4.0, physical assets in power plants 

mostly used conventional sensors that were only related to 

operational maneuvers, operational safety, and heat-balance 

calculations. However, the data from these old sensors did 

not fully support the acquisition of specific data related to the 

condition of steam boiler equipment, which was suspected to 

frequently experience damage and malfunctions. Even 

though advanced prescriptive analysis algorithms were used, 

if the available data was insufficient, the decision-making 

analysis results could not be optimized. Based on the 

imperfect diagnostic model test results, several factors need 

improvement, including: 

a. The addition of sensors to some important locations of 

boiler equipment with high-frequency disruptions, to 

detect failures with the highest failure rates, and to adapt 

to smart sensor technology on IoT in the industry. 

b. Improvement of data acquisition technology in the PI 

system to obtain accurate sensor data values without 

missing values or values that do not match the actual 

sensor values, which can cause discrepancies between 

failure types and the received sensor data. 

c. More accurate event record data on the timing, duration, 

and type of disruptions, to explain the equipment's 

condition. 

d. The model used in this research is still in the 

development stage and needs further development in 

future research. 

e. The FMEA TBM module used in this research is not the 

appropriate module, which should be the CBM module. 

However, CBM activities are still under development in 

the industry, and the CBM module is not yet available. 
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NOMENCLATURE 

MT magnetic particle 

PT dye penetrant 

RT x-ray 

EC eddy current 

VT borescope 

VT visual tube / attachment 

VT visual header / pipa > 4" 

UT ultrasonic thickness/accoustic 
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