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ABSTRACT 

The goal of predictive maintenance (PdM) is to facilitate on-
condition maintenance or reduce/eliminate unscheduled 
maintenance events. For critical systems such as aircraft, 
PdM improves safety while increasing operational readiness. 
Aircraft operators can order the parts and ensure the correct 
skills and tools are available to avoid unplanned downtime.  
An enabler for PdM is the need to estimate the remaining 
useful life (RUL). For RUL to be accurate, there needs to be 
an assessment of the current component health, a threshold 
for when it is appropriate to do maintenance, and a 
degradation model. This model could be based on some 
physical processes, such as high-cycle fatigue failure. 
However, often the exact fatigue process is unknown. In this 
paper, a quadratic RUL model is used to calculate RUL using 
a state estimator. The proposed process allows for model 
validation of the RUL state estimator itself. This is 
demonstrated using a bearing fault, a gear fault, and oil debris 
example.  

1. INTRODUCTION 

The purpose of scheduled maintenance (see MSG-3, 2018) is 
to ensure the realization of the inherent safety and design 
reliability of, say, an aircraft. Additionally, maintenance goal 
are to: 

• Restores safety and reliability when deterioration has 
occurred, and 

• To accomplish these goals at a minimum of total cost.  

Even in the context of moving maintenance to “On 
Condition,” or extending the time between overhauls (TBO) 
as recommended in AIR6334 (2020), the objective is to 
reducing cost while increasing reliability and enhancing 
safety.  

In either the case of scheduled or moving to on-condition 
maintenance, PdM facilities lowering costs by predicting 
when maintenance should be performed. Estimating a 
remaining useful life (RUL) allows replacement components 
to be marshaled, the scheduling of the right personnel for the 
maintenance action, and better asset management. Asset 
management ensures that operators can continue to support 
their commitments and generate revenue. 

RUL estimation, arguably, requires four components: 

• The current component health, 
• A threshold (the future component health where 

maintenance should occur), 
• A fault propagation model, and  
• An estimate of future load to drive the model. 
In Orchard (2009), the RUL was estimated using a particle 
filter based on the Paris’ law, which models high cycle 
fatigue. In Bechhoefer and Dube (2020), three contending 
models were tested. The models were based on some 
knowledge of how, physically, the fatigue crack is 
propagated.  

For example, in a Mode 1 crack (opening mode), the crack 
surface moves directly apart. In a Mode 2 crack, there is an 
edge sliding mode, where the crack surfaces move normal to 
the crack front while remaining in plane. Finally, in a Mode 
3 (shear mode), the crack surface moves parallel to the crack 
front and remains in the crack plane.  

A Mode 1 failure can be modeled by a Linear Elastic Model 
(Beer, 1992),  
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where  
• da/dN is the rate of change in the half crack length 

per cycle. 

• D is a material constant, 

• m is the crack growth exponent, typically 3 to 5, and 
K is proportional to strain.  
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A Mode 2 can be modeled by Head’s Theory. Here it is 
assumed that the material near the crack is treated as an array 
of independent elastic tensile bars of modulus E, each 
carrying the remotely applied stress s, which transmits the 
load to the bars both directly and through shear. The model 
for an applied stress s, is:   

!"
!#
	= 		 %&'

!"
!
"#

(&$(∆'),
	∝ 𝐾(        (2) 

When the crack loading is in the anti-plane strain (e.g., Mode 
3), the plastic zone at the crack tip can be represented as a 
continuously distributed array of small dislocations on the 
crack plane. The crack growth occurs when the accumulated 
plastic strain distribution at the crack tip exceeds some 
critical value and continues as this value is exceeded at the 
crack tip. The rate at which the crack grows per stress cycle 
in terms of displacement leads to:  
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In equations (1, 2, 3), the RUL is the time (cycles), N, which 
can be calculated by taking the inverse (e.g., solving for 
dN/da) and integrating. 

However, in this paper, a more data-driven approach is taken. 
The RUL is calculated by solving the quadratic equation.               

2. THRESHOLD SETTING 

Online condition monitoring systems measure a feature that 
is proportional to damage. In the case of oil debris monitoring 
(ODM), it is typically the cumulative mass of ferrous material 
over time. In the case of vibration monitoring, acceleration 
data is operated on by an algorithm to develop a condition 
indicator (CI). In the case of bearing defects, the CI is usually 
calculated using the Envelope analysis (see Abboud et. al. 
2017). For shaft or gear damage, analysis is based on a feature 
derived from the time synchronous average (Bechhoefer, 
Butterworth, 2019).  

While AI or other machine learning techniques could be used 
for threshold setting, here, the approach of a hypothesis test 
is used. That is, the observed (CIs) have a PDF. An operation 
is performed on the CI to define a health index (HI), which is 
then a function of distributions. The HI function in this 
application is the weighted norm of n CIs: the normalized 
energy of n CIs. The weights of the CIs is set by the Jacobian 
(the inverse covariance): 

                       𝐻𝐼 = 	0.5 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙4 √𝒀-𝒀	                          (4) 

where Y is the whitened, normalized array of CIs, and 
critical, is the critical value of the test. In a hypothesis test, 
the critical value is calculated from the inverse cumulative 
distribution function (ICDF) for a given probability of the 
false alarm. For Eq. (4), the ICDF is the Nakagami where h 
is the number of CIs in the array and = n, and w = h/(2-p/2)*2. 

A normalized HI > 0.50 for a component indicates that the 
Null Hypothesis is rejected. That is, the component is no 
longer nominal. Note that maintenance is not recommended 
until the HI > 1. This threshold process has been tested on 
numerous helicopters, wind turbines, and seeded fault testing 
on 60+ gearboxes. The level of damage for an HI of 1.00 is 
typically moderate visible damage.  

It can be shown that a whitening solution can be implemented 
using Cholesky decomposition. The Cholesky decomposition 
of the Hermitian, positive definite matrix results in A = LL*, 
where L is a lower triangular, and L* is its conjugate 
transpose. Thus, by definition, the inverse covariance is 
positive definite Hermitian. It then follows that: 

                       LL* = S-1, then Y = L × CIT                  (5) 

3. A QUADRATIC RUL ESTIMATE 

Equations (1, 2, and 3) describe a time in terms of a measured 
crack length, a. This measurement is impractical in 
application. In the CI and resulting HI paradigm, the HI 
becomes the surrogate for the crack length a. It is assumed 
that the CIs and HI are corrupted by noise, where the HI is 
nearly Gaussian. Redefining variables, then at some 
acquisition index, i, a quadratic can describe the current HI 
as:  

𝐻𝐼./0 = 1 2⁄ 𝑎.𝑡% + 𝑏.𝑡 + 𝑐.     (6) 

The variable a, here, represents d2HI/dt2 (second derivative 
of the HI), while b is dHI/dt, and c is the current estimate of 
the HI. The derivatives and estimate of the HI can be 
restricted using a Kalman filter or other Riccati equation. In 
our case, a fixed rate Alpha-Beta-Gamma filter was 
constructed to calculate the rates. The input states for the 
filter are HI, dHIdt, d2HIdt2, and the current 
measured HI, mH. The pseudo code to update the state is 
then: 

HI = HI + dHIdt*dt + d2HIdt2*dt*dt/2; 
rk = mHI - HI; 
HI = HI + alpha * rk; 
dHIdt = dHIdt + beta * rk / dt; 
d2HIdt2 = d2HIdt2 + gamma * rk / 
(2*dt*dt); 

The process variance is defined as sw2, and the plant noise 
sv2. The Alpha-Beta-Gamma filter values are then calculated 
as: 

    lam = sw2/sv2*t*t; 
    b= lam/2-3; 
    c = lam/2+3; 
    p = c-b^2/3; 
    q = 2*b^3/27 - b*c/3 - 1; 
    v = sqrt(q^2 + 4*p^3/27); 
    z = -(p+v/2)^(1/3); 
    s = z - p/(3*z) - b/3; 
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    alpha = 1 - s^2; 
    beta = 2*(1-s)^2; 
    gamma = b2^2/(2*a2); 
 

Since we are solving the time (RUL), t, until HI is equal to 1, 
we can rearrange terms and:  

 1 2⁄ 𝑎.𝑡% + 𝑏.𝑡 + 𝑐1 − 1 = 0                 (7) 

The quadratic equation can now be solved for the positive 
value of t, the RUL as: 

𝑡 = 	−𝑏 ± √𝑏
% − 4𝑎𝑐

2𝑎4 	            (8) 

3.1. Validation of the RUL  

The RUL estimate itself is noisy and requires filtering. That 
said, let one assume that the RUL model (equation 7) is 
correct. Then at some give RUL, say 100, the machine is run 
for an hour. Then at the end of the hour, the RUL should be 
99. A further hour of life is consumed, and the RUL should 
be 98. That is, for a valid model, the dRUL/dt should be 
approximately -1, and the second derivative should be close 
to zero (no acceleration).  

To test the quality of the RUL model, another Alpha-Beta-
Gamma model is run to generate, in real-time, to filter the 
RUL and to generate performance statistics to validate the 
performance of the RUL model.  

4. TEST CASE: BEARING FAULT 

This dataset was collected on a 2.1WM wind turbine. This 
data set was collected over 55 days, with one acquisition 
every 10 minutes (144 acquisitions per day). Note that the 
fault, a high-speed inner race fault, starts to propagate at 
approximately time -600 hours, which corresponds to high 
loads from a winter storm (Figure 1).  

 
Figure 1 High-Speed Bearing Fault, Wind Turbine, with RUL 
 

More details on the fault can be seen in Ref. Bechhoefer and 
Dube, 2020.  In this paper, the RUL found the best 
performance was the linear elastic model. The current 
quadratic model's fit is not as tight. The linear elastic model 
had a converged/closer RUL at approximately -500 hours. 
However, the quadratic model does converge by -300 hours 
with good prognosability and trend.   

 
Figure 2 High Speed Bearing RUL 

Figure 3 gives the first and second derivatives of the RUL. 

 
Figure 3 High-Speed Bearing Derivatives 

The first derivative of the RUL converges to -1 by -400 hours 
while the second derivative approach zero -400 hours, as 
well. Note that when the model is not converged, early in the 
experiment (-950 to -700 hours or so), are not converged to -
1, 0 respectively, indicating a poor model fit, as the bearing 
is not trending/faulted. This can be confirmed in Figure 2, 
where the RUL does not fit the -1 RUL slope until -400 hours 
or so. Of course, the RUL is also based on the usage of the 
machine, a function of wind loading.  
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5.  TEST CASE: PLANET GEAR FAULT 

In (Wang, Blunt, Kappas, 2023), an EDM notch was applied 
to the planet gear in an OH-58 gearbox. The gearbox was 
loaded to 125% torque, and acquisitions were taken every 3 
minutes. The HT TSA was collected for a 100-second 
acquisition over four channels. Condition indicators were 
developed to take advantage of the hunting tooth phenomena. 
The resulting CIs were fused into an HI, as per Eq 4.  In 
“Helicopter Main Gearbox Planet Gear Crack Propagation 
Test Dataset,” it is stated that the initial nominal data is from 
acquisitions 1 to 146 (from -25 to -25 hours) while crack 
initiation is from acquisitions 147 to 241, and from 
acquisitions 242 to 526, the crack propagates. The HI 
algorithm indicated performing a repair at acquisition 465. 
An example of the trend and prognostic in Figure 4. 

 
Figure 4 Planet Gear Fault, OH-58 Gearbox, with RUL 

 
It should be noted that it was found that the best model for 
estimating RUL was a Mode 3 dislocation theory model. 
Figure 5 gives the RUL, while Figure 6 is the derivatives. 

 
Figure 5 Planet Gear Fault RUL 

 

Note that this testing was accelerated. In practice, HUMS 
(health and usage monitoring systems) would generate alerts 
70 to 150 hours in the future. However, the DSTG did a 
remarkable job in determining the depth of the EDM notch 
and load needed to propagate the fault in a reasonable time. 
In Figure 6, it is seen that the first derivative did not converge 
to -1 until -10 hours RUL, while the second derivative did not 
approach zero until -7 hours. This is confirmed in Figure 5, 
that the RUL approach the ideal at approximately -7 hours. 
Using a dislocation theory model, the RUL had converged by 
-10 hours. Clearly, the dislocation theory model had better 
performance, yet the quadratic model did eventually fit the 
data and give good results.  
 

 
Figure 6 Planet Gear RUL Derivatives 

 
Other metrics for RUL performance have been developed, as 
given by Dr. Coble (2010), who introduces the concept of 
prognosability, monotonicity and trendability as RUL 
performance metrics. However, these metrics are more 
appropriate for comparing different RUL vs. identifying 
when an RUL model is delivering valid data.  

6.  TEST CASE: OIL DEBRIS MONITORING BEARING 
FAULT 

Oil debris monitoring systems detect ferrous and non-ferrous 
wear particles in the gearbox oil. It can determine the size so 
that the cumulative mass of material can be trended. In this 
experiment of spalling on a turbine engine bearing, the 
threshold was set at 400 mg (that is, the mass was divided by 
400 to derive an HI, such that maintenance would be 
recommended at an HI of 1.0). Figure 7 gives an example of 
the oil debris HI and prognostics.  

The RUL for the ODM data is an excellent fit, superior to 
either the linear elastic model, Head’s, or dislocation theory. 
In fact, the motivation for developing the quadratic model 
was that the exponential models failed to perform well. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016 

5 

 
Figure 7 ODM, Bearing Fault with RUL 

 
Figure 8 gives the RUL, which again shows a good fit for 
75% of the run. This indicates that the release of debris 
material is, in fact, quadratic.  
 

 
Figure 8 ODM Bearing Fault RUL 

 
The derivative is given in Figure 8, which show that the first 
and second derivative had converged to -1 and 0 by -50 hours. 
Again, this analysis occurred under accelerated life testing. 
While only 70 hours of data, it is likely that in real-world 
applications, the RUL would be 2 or 3x, or perhaps 200+ 
hours.  

 
Figure 9 ODM First and Second Derivative of the RUL 

7. CONCLUSION  

An RUL calculation facilitates PdM, and its associated cost 
saving and increase in asset availability. However, RUL, in 
general, is difficult to calculate. It was observed that having 
knowledge of the degradation process is essential for a good 
model fit. That said, sometimes simple models give adequate 
results.  
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