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ABSTRACT 

In recent years, there have been increasing expectations for 
the development of advanced plant operational support 
systems that can automate complex tasks and autonomously 
optimize operational procedures in thermal power plants. The 
performance of the equipment changes during operation and 
maintenance; hence, it is necessary to adjust the operating 
process to satisfy the operational constraints. In this study, we 
investigated a framework based on model-based deep 
reinforcement learning for acquiring control methods that are 
robust to changes in equipment performance using a digital 
twin model. A case study of the operational planning of a 
thermal power plant was presented and it was demonstrated 
that a stable control system can be constructed even when 
plant characteristics are changing. 

1. INTRODUCTION 

With the introduction of variable renewable energy into the 
power grid, thermal power plants will have more 
opportunities to start/stop and operate with varying power 
outputs. The internal state of a power plant changes even if 
the power output is the same owing to the external 
environment and degradation over time. Therefore, a control 
system adjusted based on the assumption of the plant state at 
a certain point in time, such as during design or after periodic 
repairs, may cause inefficient operation or unexpected 
problems owing to unexpected operating conditions resulting 
from changes in plant characteristics over time. Unplanned 
operation and shutdown due to readjustment of control 
parameters lead to increased costs; hence, a mechanism to 
adjust operation and control parameters autonomously 
according to the current status is necessary. 

In recent years, studies have been conducted on optimizing 
operational methods using deep reinforcement learning 

(DRL), which is expected to apply to complex tasks that 
cannot be performed using conventional controllers. In 
particular, there is great interest in the possibility of achieving 
autonomous operations. In power plants, autonomous, 
efficient, and economical operations with no operator 
intervention are expected to lead to labor savings and 
advanced operation and maintenance. 

Load control systems for thermal power plants are basically 
designed to automatically determine the amount of operation 
based on output command values and are complex systems 
that combine PID controllers, function generators, and other 
systems. In addition, thermal power plants are characterized 
by the fact that load bands, fuel properties, and changes in 
equipment performance over time can significantly change 
control characteristics, and each plant is currently undergoing 
a trial-and-error tuning process based on long-standing 
empirical rules, so there are high expectations for control 
systems that are capable of autonomous adaptation. 

Several research of DRL has been applied to the construction 
of operational and control systems for power plants (Chen, et. 
al, 2018; Adam, et. al., 2021), and the results suggest that 
applying DRL to optimize driving operations is effective. 
However, few studies on learning methods have considered 
changes in the performance characteristics of environmental 
models. Using an environmental model that can represent 
changes in plant characteristics, it may be possible to obtain 
an operational control system that is robust against changes 
in equipment performance during plant operation. For 
example, in the research field on chemical plants, Kubozawa 
et al. (2022) proposed a reinforcement learning framework 
based on a task partitioning structure that takes into account 
changes in system parameters of environmental models as a 
method to bridge the gap between reality and simulation and 
showed that a robust operation control system can be 
obtained to reduce errors between actual plant operation and 
simulation in a suddenly changing environment.  Yutaka Watanabe et al. This is an open-access article distributed under
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In this study, we investigated the effect of the different 
schemes of considering equipment performance parameters 
on control performance for the task of acquiring a control 
strategy during load increase operations, as a functional 
framework for designing an operation and control system 
with such autonomy using model-based reinforcement 
learning. 

2. METHOD 

We considered three DRL schemes. Figure 1 illustrates the 
base scheme. Here, we assume a normal reinforcement 
learning framework in which the plant characteristics do not 
change. Figure 2 shows the proposed scheme 1. Here, the 
equipment performance parameter information is used only 
in the environment, and the equipment performance 
parameters are randomly varied during learning, but not used 
for agent information during the learning and testing. Figure 
3 illustrates the proposed scheme 2. In this scheme, it is 
assumed that the equipment performance parameters of the 
actual plant can be obtained during testing, and that 
privileged information on the equipment performance 
parameters can be used during the learning and testing of the 
environment and behavioral measures. The method of 
acquiring equipment performance values during testing is 
beyond the scope of this report, but it can be achieved by 
using data assimilation methods that utilize dynamic physical 
models or machine learning models that output equipment 
performance values from measurement data. 

 

 

Figure 1. Base scheme 

 

 
Figure 2. Proposed scheme 1 

 
Figure 3. Proposed scheme 2 

3. CASE STUDY 

The proposed method was applied to the problem of 
obtaining an increased power output operation for an 
oxygen–hydrogen combustion turbine system (Watanabe et 
al., 2022). We examined the challenge of finding the optimal 
output command profile to properly change the load when 
increasing the generation output from 20% to 100% while 
satisfying the upper-temperature limit constraint at the high 
temperature turbine (HTT) outlet during the load change 
operation. 

3.1. Problem Setting 

Environment: The target plant model of the system was 
established using a Modelica-based tool developed by the 
Central Research Institute of the Electric Power Industry 
(Takahashi et al., 2016). The plant model was constructed 
based on 1D-based physical modeling as shown in Figure 4, 
and the simulation can be performed considering parameters 
related to the performance of plant components. The input 
condition is the power output command, and the fuel flow 
rate was calculated from the difference between the power 
output command value and the calculated power output. 

  

Figure 4. Dynamic model of the target system 
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Agent: A Deep Q Network was employed as the policy-
learning algorithm. The action–value function was 
approximated using a deep neural network. Network inputs 
are states and actions, and the outputs are actions.  

Action: The output change rate (in 1% increments in the 
range -1–10%/min for the next time interval) was set as the 
action for each fixed interval time (1 minute in this case) as 
shown in Fig. 5. 

State: Three state variables were set: power output, HTT 
outlet temperature, and CP inlet temperature. 

Performance parameter: Two equipment performance 
parameters were varied in this case: steam compressor and 
HTT. The change in equipment performance parameters is 
expressed by the following equation:  

𝑝 ൌ 𝑝 ∙ 𝛼                                  (1) 

where 𝑝, 𝑝, and 𝛼 denote the performance parameter of the 
model, normal performance parameter of the model, and 
degree of degradation, which is 1.0 under normal conditions, 
respectively. During training, 𝛼 was always fixed at 1.0 for 
the base scheme; for the proposed schemes 1 and 2, the value 
was set by randomly varying α between 0.98 and 1.0 for each 
episode. 

Reward function: The reward function was set as follows, 
considering the HTT outlet temperature (upper limit: +20 °C 
at rated power output) as an operational constraint on the state 
variables:  

𝑅 ൌ 1െ 𝑅ଵ െ 𝑅ଶ                             (2) 

For the R1 term, a high reward was obtained by reaching the 
rated output as quickly as possible, and for the R2 term, a 
penalty was imposed if the HTT outlet temperature exceeded 
the constrained temperature. 

 

 

Figure 5. Operational parameter 

3.2. Experimental results 

As an example of the test results for the learned controller, 
Figure 6 shows the results for a plant model with 𝛼  = 1.0 
and 𝛼ு்் = 1.0 for the degradation degree α of the equipment 
performance parameters and Figure 7 shows the results for a 
plant model with 𝛼  = 0.98 and 𝛼ு்்  = 0.98 for the 
degradation degree α of the equipment performance 
parameters. As shown in Figure 6, all the methods were able 
to increase the load without exceeding the temperature limit. 
In addition, the base scheme produced the highest output 
change rate. However, in Fig. 7, it is observed that the 
operation with the base scheme and proposed scheme 1 
exhibits unstable behavior around the rated output above the 
temperature limit, whereas proposed scheme 2 obtains stable 
load changes. The results suggest that by applying a 
reinforcement learning method that considers plant 
characteristics, as in the proposed scheme 2, we may be able 
to acquire control laws that are robust to changes in plant 
performance. 

 

  

 

(a) Power output 

 

 

(b) HTT outlet temperature 

Figure 6. Simulation result of no change in plant performance 

(𝛼 ൌ 1.0,𝛼ு்் ൌ 1.0) 
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(a) Power output 

 

 

(b) HTT outlet temperature 

Figure 7. Simulation result of changing in plant performance 

(𝛼 ൌ 0.98,𝛼ு்் ൌ 0.98) 

 

4. CONCLUSION 

We proposed a reinforcement learning framework that 
considers the changes in plant performance. It was found that 
by including information on plant characteristics in the action 
strategy during learning and testing, as in the proposed 
scheme 2, a stable control system can be constructed even 
when plant characteristics are changing. This suggests the 
importance of estimating and utilizing parameters related to 
plant characteristics in addition to actual measurable 
operating data. When applying the proposed method to actual 
plants, combining a plant model that can accurately 
reproduce actual plant conditions and technology to 
accurately estimate the equipment performance parameters is 
important. In future work, we intend to study the impact of 
the agent's learning algorithm and structure on performance 
and the applicability of the proposed method to various cases 
that can be used in actual plants. 
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