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ABSTRACT 

Predictive maintenance using sensor data has been attracting 

attention to improve the efficiency of aircraft operations. 

However, analyzing sensor data for aircraft systems can be 

challenging due to their limited sensors and dependence on 

various operational modes. Furthermore, explainability is 

crucial for applying the results of an analysis to actual 

maintenance operations. In this study, we propose an 

anomaly detection method for Cabin Air Compressors 

(CACs) in the Boeing 787-9 air conditioning system, using 

a causal graph and neural network. Our evaluations on real 

sensor data of the CACs show that our method detected 

38% of air-bearing degradation cases with explainable 

visualization of degradation trends. 

1. INTRODUCTION 

Safety and punctuality are fundamental values that every 

airline seeks to uphold. From the perspective of aircraft 

maintenance, it is necessary for better operational efficiency 

to reduce aircraft downtime while lowering operational cost. 

The 2022 International Air Transport Association [IATA] 

report showed that the commercial aircraft maintenance cost 

in global MROs amounted to approximately $62 billion and 

is predicted to double in 2030. The digitalization and 

integration of recent aviation electronics, or avionics, is one 

solution to improve maintenance productivity that enables 

the condition monitoring of aircraft systems and diagnosing 

the anomalies with vast and various sensor data during 

flights. The acquired sensor data is also expected to be 

utilized for predictive maintenance using data analytics and 

machine learning to improve fleet-wide reliability. However, 

the application of predictive maintenance to aircraft systems 

can be challenging due to limited sensors and dependence 

on various operational modes by integrated digital controls. 

The recent papers in the field of predictive maintenance to 

the aircraft systems mainly target jet engines. Aydin and 

Guldamlasioglu (2017) applied LSTM to predict the 

remaining useful life (RUL) of a turbofan engine. Mathew, 

Toby, Singh, Rao, and Kumar (2017) also compared ten 

machine-learning models for RUL prediction. The 

distinctive points of these papers are; (1) A simulation-

based dataset from the NASA data repository was used as 

benchmark, (2) The output does not have explainability. 

Luo, Zhao, and Xiong (2021) analyzed real sensor data of 

air conditioning system that has been acquired from an 

airline company to demonstrate the anomaly detection using 

a statistical approach. The proposed method can detect 

anomalies in several case studies but the fleet-wide 

performance is not discussed. 

In this paper, multivariable real sensor data is analyzed to 

detect anomalies in the Boeing 787-9 CACs. The proposed 

method utilizes both domain knowledge and machine 

learning to visually explain the degradation of the air-

bearing in the CACs. Moreover, fleet-wide analysis using a 

simple threshold was also demonstrated to evaluate the 

performance of the proposed method. This research aims to 

contribute towards the application of anomaly detection in 

the airline industry to maximize operational efficiency. 

2. PROBLEM DESCRIPTION 

In this section, we will describe the functions and features of 

the CACs, which is the target of anomaly detection in this 

study.  
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2.1. Overview of the CAC 

2.1.1. Function 

The CAC is a centrifugal compressor in the Boeing 787 

aircraft air conditioning (Pack) system. The CAC 

compresses outside air and supplies high-temperature and 

high-pressure air to the downstream Pack system. The 

appearance of the CAC is shown in Figure.1. The CAC 

consists of a rotating shaft and impeller that compresses air, 

as well as a three-phase electric motor. Variable Diffuser 

Vanes (VDVs) are also equipped in the CAC to prevent 

compressor surging by adjusting the angle of stator vanes. 

All components are housed in the metal casing. 

 
Figure 1. External view of the CAC 

 

As shown in Figure.2, two CACs are installed in parallel in 

one set of the Pack system for safety reasons. Add Heat 

Valves (AHVs) returns the CAC outlet flow to the inlet, to 

raise the outlet temperature especially in low-temperature 

environments. The Boeing 787 aircraft is equipped with two 

sets of Pack systems, Left and Right, and four CACs are 

installed per aircraft, consisting of Left-1, Left-2, Right-1, 

and Right-2. Additionally, the Pack systems are centrally 

controlled by Pack Control Unit (PCU). The PCU controls 

the Pack systems while responding to meteorological 

conditions from the ground to the upper atmosphere to 

efficiently regulate cabin conformity, such as cabin 

temperature and pressure. 

 

Figure 2. CACs in the Pack system 

2.1.2. Effects of Failure 

When the PCU detects a failure of the CAC, the PCU 

automatically shuts down the affected CAC and continues to 

operate the Pack system with the other CAC to maintain a 

safe and comfortable environment in the cabin. At the same 

time, fault messages are shown on the flight deck, and 

aircraft mechanics perform a system check after arrival. 

When a failure of a CAC is confirmed, mechanics can repair 

the Pack system by replacing the faulty CAC. The repair 

work can be postponed within a certain period based on 

Minimum Equipment List (MEL) provided by the aircraft 

manufacturer, which allows the aircraft to continue 

operation without immediate grounding. However, 

unexpected arrangements of parts and manpower are 

required. For these reasons, predictive maintenance of CAC 

is highly expected. 

2.1.3. Failure Modes 

Based on the 75 repair reports of CAC that failed during the 

39 months from June 2016, Table.1 shows the failure modes 

and effects of the CAC.  

 

The primary failure mode of the CAC is a degradation of 

air-bearings. As shown in Figure.3, an air-bearing consists 

of an inner foil sandwiched between the top foil and outer 

housing. The pressurized airflow lubricates the bearing by 

forming a thin layer between the top foil and the outer 

housing.  

 

Figure 3. Typical structure of air-bearing (journal bearing) 

Table 1. Failure modes and failure effects of the CAC 

 

Failure Modes Failure Effects 

No. Detail 
Event 

Rate 
No. Detail 

A Degradation 

of air-

bearings 

55% A-1 Minor wear and/or 

scratch on air 

bearing surface. 

A-2 Rotating shaft 

eccentricity and/or 

impeller rubs to 

casing. 

A-3 Biting of air bearing 

foils. 

B Insulation 

failure of 

motor 

40% B Imbalance resistance 

between three-phase 

motor. 

C Others 5% C Such as foreign 

object damage or no 

fault found 
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The pressurized airflow passing through the air-bearing in 

the CAC comes from heat exchangers, which is installed 

downstream of the CAC. Since this pressurized air flow is 

not filtered, atmospheric particles gradually accumulate 

inside the air-bearing, becoming the starting point of wear 

and scratch on the bearing surface. As the air-bearing wear 

progresses, the observed effects change in the order of A-1 

to A-3 in Table.1. A-1 is a stage in which only minor wear 

on the air-bearing is confirmed, and no trouble is found in 

other areas. A-2 is a stage in which deterioration of the air-

bearing has progressed, and the impeller and casing are in 

contact due to the eccentricity of the rotating shaft. A-3 is a 

situation where further deterioration of the air-bearing has 

occurred, and the internal foil is bitted between the casing 

and the rotating shaft, causing the CAC not to rotate. 

The domain knowledge and inspection results suggest that 

the rotation resistance of the shaft may have been increased 

as the air-bearing deteriorated, which might increase the 

power consumption of the three-phase electric motor.  

However, the CAC is controlled according to 

meteorological conditions and flight paths and exhibits 

various operational modes, making it difficult to evaluate its 

long-term degradation. 

2.2.  Sensor Data 

The Boeing 787 has a function to acquire time-series sensor 

data called Continuous Parameter Logging (CPL). In this 

study, 44,118 flights of the Boeing 787-9 aircraft (5 aircraft 

with domestic seat configuration and 35 aircraft with 

international seat configuration) operated by an airline from 

January 2021 to 25 months were analyzed. The time-series 

sensor data was acquired from engine start to engine shut-

down with 1 Hz sampling frequency. 

2.3. Features of CACs 

The following factors make anomaly detection difficult 

among the structural and functional features of the CAC. 

Individual Performance Errors 

The performance of machine accessories such as 

compressors may differ slightly due to manufacturing and 

assembly errors. 

Interaction of CACs Running in Parallel 

Figure.2 shows two CACs are installed to operate in parallel 

with a shared inlet and outlet for one Pack system. The PCU 

controls these two CACs and adjusts the airflow output to 

the target value. Therefore, if the performance of one CAC 

deteriorates, it may also affect the other CAC. 

Operational Modes 

The CACs have various operation modes during flights in 

response to the external environments and the target cabin 

temperature and pressure. Especially, external conditions 

such as the meteorological conditions and flight paths are 

always different depending on the flight conditions which 

make the anomaly detection difficult. 

3. PROPOSAL METHOD 

This study proposes a method for predicting the time-series 

power consumption during climb flight and detecting 

anomalies when there is an error between the predicted and 

actual power consumption. 

3.1. Feature Selection 

Based on the disclosed information to operators, we 

organized a causal graph of parameters around a CAC into a 

diagram shown in Figure.4. 

 

Figure 4. Causal graph of CAC power consumption 

 

The gray boxes represent parameters that cannot be acquired 

using the CPL. We have selected three explanatory variables 

shown in Table.2 to estimate the CAC power consumption 

based on Figure.4. 

3.2. Region of Interests 

We mainly focused on the climb phase of the flights, in 

which the CAC is rotating at a low speed, making the air-

bearing lubrication pressure relatively low. For 

confidentiality reasons, specific methods have been omitted 

from this paper. 

3.3. Anomaly Detection Method 

3.3.1. Benchmarks 

We evaluated the actual power consumption of CAC during 

the climb phase using three different benchmarks: 

• The actual power consumption of the other CAC 

running in parallel. 

• The predicted power consumption by a neural network 

model derived from a typical Pack system (typical 

model). 

• The predicted power consumption by a neural network 

model derived from the subject Pack system (subject 

model) 
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Comparison with the other parallel CAC is a simple method 

to offset the meteorological condition differences. In 

addition, we also developed a power consumption 

estimation model under the conditions shown in Table.2. 

The typical power consumption model was trained using the 

oldest 500 flights after the aircraft delivery in which no 

Pack system-related failure has yet to be experienced. In 

comparison, the subject Pack systems’ power consumption 

model was trained using the first 100 flights after the CAC 

installation, and we updated the model every time the CACs 

were replaced in the subject Pack system. 

 

3.3.2. Error Functions 

We evaluated the actual power consumption 𝑝 in size of 𝑛 

time-series samples during a single climb flight with the 

benchmarks using Eq. (1) and Eq. (2), where maximum and 

minimum functions are used to assess the increase and 

decrease of the power consumption, respectively. 

 𝑀𝑆𝐸𝑝𝑜𝑠 =
1

𝑛
∑ {𝑚𝑎𝑥(𝑝(𝑡) − �̂�(𝑡), 0)}

𝑛

𝑡=0
 (1) 

 𝑀𝑆𝐸𝑛𝑒𝑔 = −
1

𝑛
∑ {𝑚𝑖𝑛(𝑝(𝑡) − �̂�(𝑡), 0)}

𝑛

𝑡=0
 (2) 

4. EXPERIMENT RESULT AND DISCUSSIONS 

4.1.1. Case Studies 

Figure.5 and 6 show the evaluation results of the power 

consumption of the CACs on the two different aircraft, 

JA872A and JA830A. The left side of the figure represents 

CAC#1, and the right side represents CAC#2, with each 

point representing the evaluation results of the power 

consumption errors for one flight, while the colored area in 

the bottom row shows the training period of the subject 

models. The top, middle and bottom row represents the 

evaluation results with the other parallel CAC, the typical 

model, and the subject model, respectively. The vertical 

solid line represents the replacement of the faulty CAC, and 

the broken vertical line represents the replacement timing of 

the other CAC running in parallel. Table.3 shows the 

inspection results of the CACs based on the aircraft 

maintenance records and the repair reports. 

Focusing on the failure case No.2 in Table.3 and Figure.5, 

the 𝑀𝑆𝐸𝑝𝑜𝑠 of Left-2 CAC using the subject model has been 

slightly increasing since July 2022 and exceeded 0.75 just 

before the failure. Based on the repair report of the CAC, we 

have concluded that the air-bearing degradation and the 

contact between the impeller and the casing may have 

caused the increase in power consumption. Figure 5 also 

shows that the evaluation using the subject model is smaller 

than the typical model results. The results suggest that the 

typical model is not able to absorb the individual 

performance errors and the subject model can be used for 

anomaly detection of the air-bearing degradation. On the 

hand, the 𝑀𝑆𝐸𝑝𝑜𝑠  of Left-1 CAC using the subject model 

has also been slightly increasing similar to the Left-2 CAC. 

The results show that the Left-1 CAC may have been 

affected by the degradation of the Left-2 CAC since the 

PCU controls both CAC to achieve the outlet pressure and 

temperature target. In anomaly detection, the CAC with the 

higher increase in power consumption is considered 

anomalous. 

In Figure.6, we can observe that the seasonal trend both in 

𝑀𝑆𝐸𝑝𝑜𝑠  and 𝑀𝑆𝐸𝑛𝑒𝑔  in all benchmarks. Although the 

failure modes and effects were the same between the failure 

case No.2 and 3 in Table.3, the periodic trends in the 

prediction errors make anomaly detection difficult. These 

trends are a common characteristic observed in aircraft with 

domestic seat configurations. It means the proposed 

methods can be affected by the differences between 

domestic flights and international flights. 

4.1.2. Fleet-wide Anomaly Detection 

Based on the previous analysis, an abnormal increase in 

power consumption compared to the subject model, as 

stated in Eq. (3), was used to detect anomalies. The five 

aircraft with domestic seat configuration was excluded from 

the evaluation. Where 𝑁 represents the number of flights in 

the past 21 days, and  𝑀𝑆𝐸𝑝𝑜𝑠_𝑠𝑢𝑏 represents the evaluation 

result of the power consumption compared with the subject 

model. 

 
1

𝑁
∑ 𝑀𝑆𝐸𝑝𝑜𝑠_𝑠𝑢𝑏 𝑖 > 0.35

𝑁

𝑖=0
 (3) 

In case parallel CACs satisfied Eq. (3) simultaneously, only 

the one with a higher power consumption was considered 

anomalous.  

Table 2. CAC power consumption model 

 
Objective variable CAC power consumption 

Explanatory 

variables 

CAC rotation speed, CAC inlet 

pressure, AHV position 

Network Type Nonlinear input-output network 

Hidden layer Single layer / 10 Nodes 

Time delay 1 Second 

Error function Mean Square Error (MSE) 

Division of data Training: 70%  

Validation: 15% 

Test: 15% 

Early stopping Until the validation error 

increases consecutively for six 

iterations or 1000 iterations. 

 

 



 

 

 

Figure 5. Evaluation results of CAC power consumption  

aircraft registration: JA872A (with international seat configuration) 

 

 
Figure 6. Evaluation results of CAC power consumption  

aircraft registration: JA830A (with domestic seat configuration) 

 

 

  

Table 4. Results of anomaly detection 

 

 

Observed failure 

modes and effects Total 

A-1 A-2 A-3 

Cases where anomalies 

were predicted: 𝑎 
3 7 8 18 

Cases where anomalies 

were NOT predicted: 𝑏 
7 15 7 29 

False positives: 𝑐 - - - 9 

Recall: 𝑎 (𝑎 + 𝑏)⁄  30% 32% 53% 38% 

Precision: 𝑎 (𝑎 + 𝑐)⁄  - - - 67% 

 

Table 3. CAC removals in case studies 

 

No. Aircraft Position 
Removal 

date 

Confirmed effects 

A-1 A-2 A-3 

1 JA872A Left-1 Feb.08.2021 YES NO NO 

2 JA872A Left-2 Jan.20.2023 YES YES YES 

3 JA830A Right-1 Dec.26.2022 YES YES YES 

4 JA830A Right-2 Jan.01.2023 YES NO NO 

 

 



 

 

Table.4 shows the results of the anomaly detection of CACs 

caused by air-bearing failures. The proposed method 

detected 38% of air-bearing anomalies before their 

occurrence. When comparing the recalls by the type of 

effects of air-bearing degradations, A-3 had the highest rate, 

followed by A-2 and A-1. The results imply that the A-3 

failure mode is most susceptible to the proposed method, as 

it represents the most advanced stage of air-bearing 

degradation. However, there are nine false positives in 

which the CAC failures were not confirmed within six 

months of anomaly detection. 

5. CONCLUSIONS 

An anomaly detection method was proposed using real 

sensor data of the Boeing 787-9 CACs. The proposed 

method aims to detect degradation of air-bearings, which is 

the primary failure mode of the CACs. 

The case studies revealed that the benchmark using the 

neural network model trained by the sensor data of subject 

systems can be useful for anomaly detection. At the same 

time, the other two benchmarks explain the interactions 

between the two CACs running in parallel. The seasonal 

trend of power consumption error in the aircraft with 

domestic seat configuration is a problem that needs to be 

investigated. 

The fleet-wide evaluation revealed that the proposed method 

detected 38% of air-bearing degradation cases and the recall 

increased as the effect of air-bearing degradation progresses. 

When considering the brake-even point between inspection 

costs and the effectiveness of predictive maintenance, the 

accuracy of the anomaly detection method proposed in this 

study has room for improvement. 
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