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ABSTRACT

Retrieval based multivariate time series anomaly detection
and diagnosis refer to identifying abnormal status in certain
time steps and pinpointing the root cause input variables, i.e.,
sensors, by comparing a current time series segment and its
relevant ones that are retrieved from huge amount of histor-
ical data. Binary coding with a deep neural network can be
applied to reduce the computational cost of the retrieval tasks.
However, it is hard to pinpoint the root cause sensors that
are responsible for the anomaly, once multivariate time series
segments are transformed into binary codes. In this paper,
we present an unsupervised retrieval based multivariate time
series anomaly detection and diagnosis method with deep bi-
nary coding model, to secure both efficiency and explainabil-
ity. Specifically, we first transform input multivariate time se-
ries segments into low dimensional features with a temporal
encoder. Subsequently, two hash functions predict two binary
codes with different lengths from each feature. The binary
codes with two different lengths can contribute to accelerate
both anomaly detection and anomaly diagnosis. Experiments
performed on datasets from various domains including real
optical network, demonstrate the effectiveness and efficiency
of the proposed method.

1. INTRODUCTION

Multivariate time series data naturally arises in many areas
of real world applications. For example, complex physical
systems such as power plants, optical networks are equipped
with a large number of sensors distributed across differ-
ent components to monitor the operation status in real-time.
Moreover, due to the recent widespread of wearable devices,
such sensors, which simultaneously record various status at
regular intervals, could be placed even on human bodies
for continuously monitoring our health status (Sprint, Cook,
Weeks, Dahmen, & Fleur, 2017). Intuitively, huge amount
of historical multivariate time series recorded from a system
can be useful to detect unusual anomaly status. For example,
when the system shows some faults, multivariate time series
should be dissimilar from any of historical cases. Therefore,
anomaly detection based on multivariate time series retrieval,
i.e., retrieving multivariate time series segments (a slice of
multivariate time series that lasts for a short time period) from
database by querying with a current segment –it is called re-
trieval based multivariate time series anomaly detection– is
an important problem.
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A naı̈ve approach to multivariate time series retrieval is to
measure the pair-wise similarity of multivariate time series in
the raw input space based on, e.g., Euclidean distance or Dy-
namic Time Warping (DTW) (Rakthanmanon et al., 2012).
This could be the most accurate in terms of the comparison
between raw time series segments, but unfortunately, it is usu-
ally computationally infeasible if the number or the length
of time series are large. A promising approach to this prob-
lem is to obtain a good representation of time series segments
(Chakrabarti, Keogh, Mehrotra, & Pazzani, 2002) while most
of existing technique consider only univariate time series and
require domain knowledge about target systems. In recent
years, many methods based on approximate nearest neighbor
(ANN) search with deep neural networks, e.g., Convolutional
Neural Network (CNN) based method (Yang, Lin, & Chen,
2018) and Recurrent Neural Network (RNN) based method
(Song, Xia, Cheng, Chen, & Tao, 2018; Zhu et al., 2020),
have been emerged as the leading approaches.

However, even if effective binary codes are available by such
state-of-the-art hashing methods, to practically retrieve his-
torical multivariate time series from a query, we still need
two heavy load processes; calculating pair-wise similarity be-
tween all pairs of a query and huge amount of historical data,
and sorting based on the similarity. Moreover, once multivari-
ate time series segments are transformed into binary codes, it
is hard to pinpoint the root cause input variable that is respon-
sible for the anomaly.

To address aforementioned issues, in this paper, we present
Deep Hashing Network for Retrieval based Anomaly Detec-
tion (DHN-RAD) to perform unsupervised multivariate time
series anomaly detection serving both efficiency and explain-
ability. DHN-RAD employs the Long Short-Term Mem-
ory (LSTM) (Hochreiter & Schmidhuber, 1997) units to ex-
tract low dimensional features from the input time series seg-
ments capturing their temporal dynamics. Two hash functions
predict two different length binary codes from each feature.
Triplet losses for these two binary codes are employed in un-
supervised way to simultaneously preserve relative similarity
relations only with the nearest neighbor information in the
original input space. In query phase, we perform sub-linear
search that requires searching only small subset of historical
data just by comparing shorter sub-linear binary codes. We
also propose anomaly detection and diagnosis methods fully
utilizing binary codes. Anomaly detection is performed based
on the retrieval result, and once anomaly is detected at a cer-
tain time point, sensor ranking for anomaly diagnosis can be
done efficiently by comparing query time series segments and
small number of exemplar segments selected with sub-linear
binary codes.
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Figure 1. The network architecture of proposed DHN-RAD

Experiments are performed in the context of multivariate time
series anomaly detection in various domains including IoT
system state monitoring, human activity monitoring and op-
tical network monitoring. They demonstrate the effectiveness
and efficiency of the proposed method.

2. UNSUPERVISED DEEP HASHING NETWORK FOR RE-
TRIEVAL BASED ANOMALY DETECTION

In this section, we first state the problem of unsupervised mul-
tivariate time series retrieval. Then, we present a layer-by-
layer description of our proposed Deep Hashing Network for
Retrieval based Anomaly Detection (DHN-RAD) model with
the strategy for efficient time series retrieval based on two
different length binary codes. Figure 1 illustrates the overall
architecture.

2.1. Problem Statement
We introduce some notations used in this paper. We denote
a multivariate time series segment X = [x1, . . . ,xd]⊤ =
[x1, . . . ,xw] ∈ Rd×w as a d-dimensional and w-length
segment, where w is the length of window, xℓ =
[xℓ

1, x
ℓ
2, . . . , x

ℓ
w] ∈ Rw (ℓ = 1, 2, . . . , d) is a time series

segment of length w for the ℓ-th dimension (sensor), xt =
[x1

t , x
2
t , . . . , x

d
t ] ∈ Rd (t = 1, 2, . . . , w) is a vector from all d

dimensions of time series segment at a certain time point t.

Suppose that we have a collection of historical time series
segments denoted by D = {Xi}Ni=1, where N is the total
number of segments in the collection. Given a newly incom-
ing multivariate time series segment query Xq ̸∈ D, i.e., a
slice of d-dimensional time series which lasts w time steps,
the time series retrieval task is to find its most similar time
series segments in D, i.e., we aim to obtain

X⋆
q ∈ argmax

Xp∈D
S(Xq,Xp), (1)

where p is the index of p-th segment (p ∈ {1, 2, . . . , N}) and
S : Rd×w × Rd×w → R is a function which measures the
similarity between two multivariate time series segments.

2.2. Feature Extraction
To perform multivariate time series retrieval efficiently, it is
essential problem to obtain a good simple representation of
raw multivariate time series segments capturing their tem-
poral dynamics. Given a multivariate time series segment

X = [x1,x2, . . . ,xd] ∈ Rd×w, where xt ∈ Rd (1 ≤ t ≤
d), we aim to learn a non-linear feature extraction function
F : Rd×w → Rm from X to m-dimensional (m ≪ d × w)
representation (feature) h ∈ Rm with

h := F (X). (2)

To extract features from multivariate time series segments, we
have several choices such as Convolutional Neural Network
(CNN) (N. Kalchbrenner, 2014), Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) and Transformer
(Vaswani et al., 2017). In this paper, we employ LSTM as
an example as F , since it explicitly captures both the tempo-
ral dynamics and the long-term dependencies of inputs, and
have been widely used for sequence to sequence learning in
many areas (Cho et al., 2014). In the feature extraction, the
last hidden state of LSTM units is employed as the feature of
a raw multivariate time series segment, since it encodes tem-
poral dynamic information in the entire segment. Finally, F
can be written as:

F (X) = LSTM(X; θLSTM), (3)

where θLSTM is the set of trainable parameters in LSTM.

2.3. Feature-Binary Layer
In feature-binary layer, we aim to extract two kinds of binary
codes with different length, v1-bits full-length binary codes
and v2-bits sub-linear binary codes (v1 > v2) from the output
of feature extraction layer.

2.3.1. Binary Code Prediction Functions
Given the representation for a raw multivariate time series
segment h, we aim to learn two mappings H1 : Rm →
{−1,+1}v1 and H2 : Rm → {−1,+1}v2 which compress
m-dimensional real-valued input h into respectively v1-bit
and v2-bit binary codes. These mappings are known as whole
binary embedding or hash functions in the literature and are
expressed as

Hi(h) = sgn(Gi(h)), (i = 1, 2), (4)

where sgn(·) is the element-wise sign function that extracts
the sign of each element in the input, and Gi : Rm → Rvi

(i = 1, 2) is a prediction function. A variety of prediction
function are available for serving to specific data domains and
practical applications. In this paper, for simplicity, we utilize
linear prediction functions for G1 and G2, i.e.,

G1(h;W1) := W1(h− h̄), (5)
G2(h;W2) := W2(G1(h)− ḡ), (6)

where W1 ∈ Rv1×m, W2 ∈ Rv2×v1 are weight matri-
ces to be learned, and biases h̄ := 1

N

∑N
i=1 F (Xi), ḡ :=

1
N

∑N
i=1 G1(F (Xi)) are set for making each bit nearly bal-

anced, to take as much information as possible (Gong, Lazeb-
nik, Gordo, & Perronnin, 2013). From Eqs. (4), (5) and (6),
we can summarize whole hash functions H1 and H2 as:

Hi(h;Wi) := sgn(Gi(h;Wi)), (i = 1, 2),

which are parameterized respectively by W1 and W2. In the
following description, we simply use H1(h) and H2(h) for
denoting H1(h;W1) and H2(h;W2), respectively.
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2.3.2. Unsupervised Triplet Losses
Desired hash functions should keep relative similarity re-
lationship in output Hamming space between two binary
codes from that between two multivariate time series in in-
put space. Motivated by (Schroff, Kalenichenko, & Philbin,
2015), we leverage relative similarities in the form of triplets
(a,+,−) ∈ Itriplet, where a, + and − stand for anchor, pos-
itive and negative indices, respectively, and Itriplet is the set
of all possible triplet indices. In this paper, the triplets are se-
lected based on the similarity in the original input space, e.g.,
(a,+,−) are selected so that X+ is within k-nearest neigh-
bor (k-NN) from Xa while X− is out of k-NN from Xa,
respectively in the input space.

Intuitively, the desired hash functions Hi(·) (i = 1, 2) would
be expected to preserve these relative similarity relation-
ships revealed by Itriplet within the Hamming space, i.e., to
make Hamming distance between the embeddings Hi(ha)
and Hi(h+) smaller than that between Hi(ha) and Hi(h−),
where ha, h+ and h− are respectively anchor, positive and
negative features extracted from Xa, X+ and X− by F (·) in
Eq. (2). The triplet losses that evaluate hash functions Hi
(i = 1, 2) under above intuition are then

ℓtriplet
i :=

∑
(a,+,−)∈Itriplet

max(0, d+i − d−i + α), (7)

where dqi := ∥Hi(ha) −Hi(hq)∥0 is the Hamming distance
between Hi(ha) and Hi(hq) (q ∈ {+,−}), ∥h∥0 is the ℓ0-
norm, which counts the number of non-zero entries in h, and
α ≥ 0 is a margin.

2.4. Optimization Problem
Based on the discussion in Sections 2.3, we can summarize
the loss function as the following objective of our proposed
network model:

ℓ(θ) := ℓtriplet
1 (θ) + λℓtriplet

2 (θ), (8)

where θ is the set of all trainable parameters in the model, i.e.,
θ := θLSTM∪{W1,W2}, and λ ≥ 0 is the weight parameter
that controls the importance of the triplet loss ℓtriplet

2 for sub-
linear binary codes.

Unfortunately, our objective (8) is hard to be optimized as
it is, since the hash functions Hi(·) (i = 1, 2) are discrete
mappings and the Hamming distances in the triplet loss ℓtriplet

i
lies in a discrete space. To address this issues, we relax the
original discrete objective to a continuous and differentiable
surrogate. The hash functions Hi(·) (i = 1, 2) can be re-
laxed as Hi(h) ≈ Hi(h) := tanh(Gi(h;Wi)), which are
differentiable, by approximating sgn(·) ≈ tanh(·). We also
relax the Hamming distance in (7) to the ℓ1-distance, i.e.,
dqi ≈ d

q

i := ∥Hi(ha)−Hi(hq)∥1 (q ∈ {+,−}).
Based on the above relaxations, we finally have the following
continuous and differentiable objective:

ℓ(θ) := ℓ
triplet
1 (θ) + λℓ

triplet
2 (θ), (9)

where ℓ
triplet
i :=

∑
(a,+,−)∈Itriplet

max(0, d
+

i − d
−
i + α) (i =

1, 2). These relaxations have been naturally used for the op-
timization of binary embedding networks (Lai, Pan, Liu, &

Yan, 2015). For optimizing the all trainable parameters θ of
the proposed network, we employ Adam optimizer to perform
backpropagation over entire network based on stochastic gra-
dient descent with mini-batch size 256.

3. RETRIEVAL BASED MULTIVARIATE TIME SERIES
ANOMALY DETECTION AND DIAGNOSIS

3.1. Time Series Retrieval with Sub-linear Search
If the training is finished, we extract two different length of
binary codes cfull

i ∈ {−1,+1}v1 and csub
i ∈ {−1,+1}v2 for

all historical time series segments Xi ∈ D (i = 1, . . . , N)
respectively by cfull

i := H1(F (Xi)) and csub
i := H2(F (Xi)).

Since v2 < v1, the number of unique sub-linear binary codes
csub
i extracted from Xi are expected to be much less than that

of unique full-length binary codes cfull
i , i.e., many different

full-length binary codes would share the same sub-linear bi-
nary code. This fact enable us to perform efficient multivari-
ate time series retrieval by sub-linear search.

The sub-linear search algorithm for efficient multivariate time
series retrieval is summarized in Algorithm 1. After extract-

Algorithm 1: Top-k sub-linear search for efficient multi-
variate time series retrieval
Input : Xq , I, k, rmax
Output: Top-k similar time series segments to Xq

1 J ← ∅, r ← 0;
2 cfull

q ← H1(F (Xq)), csub
q ← H2(F (Xq));

3 while |J | < k and r < rmax do
4 Ωr ← {c ∈ {−1,+1}v2 |∥c− csub

q ∥0 = r};
5 for c′ ∈ Ωr do
6 J ← J ∪ I(c′);
7 r ← r + 1;

8 ∆← {∥cfull
j − cfull

q ∥0|j ∈ J };
9 [i⋆1, . . . , i

⋆
k]← argsort(∆)[: k];

10 return Xi⋆1
, . . . ,Xi⋆k

ing full-length and sub-linear binary codes for all historical
time series segments, we construct a sub-linear dictionary I
which returns the set of all indices that share a common sub-
linear binary code, i.e.,

I(csub) :=
{
i
∣∣csub

i = csub } ⊂ {1, . . . , N}. (10)

For a query time series segment Xq , we extract its full-length
and sub-linear binary codes, cfull

q and csub
q by DHN-RAD (line

2). Then, we first retrieve indices of time series segment in
database by I(csub

q ) and add them to the candidate indices J
(lines 4-6 for r = 0). If we do not retrieve sufficient number
of indices, i.e., |J | < k, we next look for I with the sec-
ond nearest sub-linear binary codes, i.e., Ωr with sub-linear
binary codes, r(≥ 1) of whose bits are flipped from csub

q . We
iterate this process incrementing r until enough candidates
are retrieved (i.e., |J | ≥ k) up to the pre-defined maximum
number of flipped bits rmax (lines 3-7).

Once we have enough number of candidate indices, we cal-
culate pair-wise Hamming distances ∆ between full-length
binary code of the query segment cfull

q and those of the subset

3
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of database segments assigned by J (line 8). Then, we sort
∆ in ascending order and retrieve up to k number of indices
from the top ones (line 9), for example, we retrieve j′ as i⋆1 if
∥cfull

j′ − cfull
q ∥0 is the smallest within ∆. Finally, we retrieve k

time series segments Xi⋆1
, . . . ,Xi⋆k

as the most relevant ones.

3.2. Anomaly Detection and Diagnosis
Once we retrieve the top-k relevant time series segments
Xi⋆1

, . . . ,Xi⋆k
to a query time series segment Xq , we can cal-

culate the anomaly score a(Xq) as the aggregate of Euclidean
distances of features to these top-k ones in the database. For
example, if we consider the average of distances, it can be
written as:

a(Xq) :=
1

k

k∑
j=1

∥F (Xi⋆j
)− F (Xq)∥2.

If an anomaly is detected in a query time series segment Xq ,
i.e., a(Xq) exceeds a prefixed threshold η > 0, then we do
sensor ranking to pinpoint which sensors (dimensions) of Xq
are responsible for the anomaly. To measure how each sensor
value is diverse between a pair of time series segments, we
first define a divergence score of sensor ℓ (ℓ = 1, . . . , d) dsℓ

between two time series segments Xp and Xq:

dsℓ(Xp,Xq) := |x̄ℓ
p − x̄ℓ

q|,

where x̄ℓ
p is the average of the ℓ-th dimension of time se-

ries segment Xp over all w points in the window, i.e., x̄ℓ
p :=

1
w

∑w
t=1 x

ℓ
t,p. Intuitively, ‘abnormal sensors’ are diverse from

normal sensors of any historical time series segments, so ide-
ally, we want to calculate the divergence score against all his-
torical segments for each query time series segment. How-
ever, if we have huge amount of historical time series segment
as assumed in this paper, such strategy is computationally in-
feasible. To address this issue, we propose to compare the
query segment with only small subset of time series segments,
i.e., exemplars, which summarize well whole historical data.

To select exemplars from whole historical time series seg-
ments, we use the sub-linear dictionary I constructed in Eq.
(10), Section 3.1. Note that the number of unique sub-linear
binary codes is at most 2v2 . If that number is enough small
comparing to the total number of segments in the database N ,
i.e., 2v2 ≪ N , the sub-linear binary codes can be regarded
as cluster assignments since many segments share a common
sub-linear binary code. In this paper, we select a segment
which is the closest to the centroid of a cluster assigned by a
sub-linear binary code c as an exemplar X∗

c, i.e.,

X∗
c := argmin

X∈Xc

∥X̄c −X∥F ,

where Xc := {Xi|i ∈ I(c)} and X̄c := 1
|Xc|

∑
X∈Xc

X and
∥ · ∥F is the Frobenius norm of matrices.

Anomaly sensors should have large divergence score for any
exemplars, so we compute the sensor score sℓ (ℓ = 1, . . . , d)
for a query time series segment Xq by

sℓ(Xq) := min
X∗∈X∗

dsℓ(X∗,Xq),

where X ∗ is the set of all exemplars. Then we can get sen-
sor ranking r by sorting the indices of sensors in descending
order with the sensor score sℓ, i.e., r := [ℓ⋆1, . . . ℓ

⋆
d], where

sℓ
⋆
1 (Xq) > · · · > sℓ

⋆
d(Xq).

Following above discussions, the proposed anomaly detection
and diagnosis algorithm can be summarized in Algorithm 2.

Algorithm 2: Anomaly detection and diagnosis
Input : Xq , I, k, rmax, η, X ∗

Output: Anomaly score a(Xq), sensor ranking r
1 Retrieve Xi⋆1

, . . . ,Xi⋆k
from Xq with I, k and rmax by

Algorithm 1;
2 a(Xq)← 1

k

∑k
j=1 ∥F (Xi⋆j

)− F (Xq)∥2;
3 r← ∅;
4 if a(Xq) > η then
5 for ℓ = 1, . . . , d do
6 for X∗ ∈ X ∗ do
7 dsℓ(X∗,Xq)← |x̄∗ℓ − x̄ℓ

q|
8 sℓ(Xq)← minX∗∈X∗ dsℓ(X∗,Xq)

9 r← [ℓ⋆1, . . . ℓ
⋆
d], where sℓ

⋆
1 (Xq) > · · · > sℓ

⋆
d(Xq);

10 return a(Xq), r

4. EXPERIMENTS

4.1. Datasets
We employ real multivariate time series datasets from three
different sources, IoT, PAMAP2 and Optical Network as
shown in Table 1.

Table 1. Details of three multivariate time series datasets

Dataset # sensors # time points
IoT 4 20,000

PAMAP2 52 376,416
Optical Network 96 13,054

IoT (Internet of Things) dataset is collected from a very sim-
ple IoT equipment with an acceleration sensor, a thermome-
ter and a fan. Four time series including 3D accelerations and
temperature are collected from the acceleration sensor and the
label represents the anomaly status (normal, eccentric, break
and stop) on the fan for each time point. We sample 19991
segments of length 10 with overlap 9 and anomaly detection
models are trained on normal data and tested on the rest to
detect three types of anomaly statuses.

PAMAP2 dataset1 is for physical activity monitoring (Reiss
& Stricker, 2012). It contains various different physical activ-
ities, performed by 9 subject wearing 3 internal measurement
units (IMUs) and a heart rate monitor. Observations from
IMUs and a heart rate monitor can dramatically change by the
subjects, so in this experiment, we select one subject (Sub-
ject101) for simplicity. The dataset from Subject101 contains
52 time series with 376,416 time points and 13 different phys-
ical activities. We sample 37,741 segments of length 100 with

1https://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
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overlap 90. Anomaly detection model is trained on the seg-
ments only with daily physical activities such as ‘lying’, ‘sit-
ting’, ‘standing’, ‘ascending stairs’ etc and tested to detect
exercise activities such as ‘running’, ‘cycling’, ‘Nordic walk-
ing’ and ‘rope jumping’ as anomalies.

Optical network dataset is collected from a simple optical net-
work system illustrated in Figure 2. It composed of three
network nodes, which includes several devices such as op-
tical transponders (TPND), switches (WA, XF) and amplifiers
(WA, CA). We collect data from sensors in these devices and
obtain 96 number of time series with 13,054 time points. We
sample 13,045 segments of length 10 with overlap 9. We aim
to detect two kinds of faults occurred in the network:

(a) Optical power degradation in the optical path between
Node 1 and Node 2

(b) Optical power degradation by the fault of power adjust-
ment function of WA in Node 2

Anomaly detection models are trained on time series seg-
ments without any faults and then tested on the rest to detect
these two faults.

Figure 2. Network configuration diagram of optical network

4.2. Baselines and Settings
In this experiment, we compare DHN-RAD with three dif-
ferent representative anomaly algorithms. Among them,
One-Class Support Vector Machine (OC-SVM) (Manevitz &
Yousef, 2002) is general anomaly detection method and Real-
Time and Self-Taught Anomaly Detection (RTST-AD) (Chen
et al., 2018), which is a deep learning based method with clus-
tering, is specialized for anomaly detection on optical net-
work systems. Classification Score Profile (ClaSP) (Schäfer,
Ermshaus, & Leser, 2021) based on self-supervision and time
series segmentation, and the proposed method are specialized
for time series anomaly detection. We use hash dimensions
(v1, v2) = (256, 16) and the margin α = 1.0 for DHN-RAD.
The hyper-parameter λ of DHN-RAD is optimized based on
grid search over λ ∈ {0.001, 0.01, 0.1}, and threshold η for
anomaly detection is determined based on the anomaly score
on validation data, i.e., η = maxX∈Xval a(X) ·β, where X val

is the set of all validation data and β > 0 is optimized with
grid search over β ∈ {0.8, 1.0, 1.5, 2.0}. DHN-RAD is im-
plemented in Python 3.10 with PyTorch 1.9 and trained on a
server with Intel® Core™ i9-7900X @ 3.3 GHz 10 core CPU
and single NVIDIA GeForce RTX™ 1080 Ti graphics card.

4.3. Results
4.3.1. Anomaly Detection
The anomaly detection performances are shown in Table 2.
All evaluation metrics, precision (P), recall (R) and F1 score
(F1) are averaged over 5 trials with different subset of train-
ing data. It shows that the time series specialized methods

ClaSP and DHN-RAD outperform general anomaly detection
method because they fully utilize temporal dynamics of time
series. ClaSP achieves good recall in all datasets but preci-
sion is significantly degraded in PAMAP2 and Optical Net-
work. This is because segmenting time series gets harder as
datasets become complex. DHN-RAD consistently achieves
the best or the second best performance for both precision
and recall and also always achieves the best F1 score for all
datasets. This means the proposed method can detect as many
faults as possible keeping small number of false alarm.

4.3.2. Retrieval Efficiency
We next examine the efficiency of sub-linear search (Algo-
rithm 1) employed in our approach. Figure 3 shows the com-
parison of the average query time between sub-linear search
and full search (i.e., calculate pair-wise hamming distance
with query and all binary codes in historical database and then
pick up the top k) changing rmax = 1, 2 for each dataset. It
indicates that sub-linear search is less affected by the growth
of the number of examples in database than full search, re-
sulting that the more samples in database, the more beneficial
sub-linear search is.

IoT PAMAP2 Optical Network
0

5

10

15
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g.
 q
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m
e 
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15.08

1.450.07 0.07 0.060.69 0.94 0.64

full
rmax=1
rmax=2

Figure 3. Retrieval efficiency comparison

4.3.3. Anomaly Diagnosis
Finally, we show the effectiveness of the proposed anomaly
diagnosis algorithm (Algorithm 2) with Optical Network
dataset. Figure 4 shows the time series shapes of top 5 (out of
96) sensors ranked by the proposed sensor ranking algorithm
as well as anomaly score by the proposed method for both
kinds of faults (a) and (b). We can clearly see that the top
ranked sensors capture the change of anomaly score, and we
also found that the ground truth sensors specified by domain
experts are included in these top 5.

5. CONCLUSION

In this paper, we have proposed an unsupervised retrieval
based multivariate time series anomaly detection and diag-
nosis method with a deep binary coding model DHN-RAD.
DHN-RAD employs LSTM units to extract features from
multivariate time series capturing their temporal dynamics. It
extracts two kinds of binary codes of different length to per-
form sub-linear search for efficient multivariate time series
retrieval and diagnosis. Anomaly detection and diagnosis can
be done efficiently with the proposed sub-linear search, diver-
gence score and exemplars. Experiments are performed on
various datasets from different domains including IoT system
monitoring, human activity monitoring and real optical net-
work monitoring, and demonstrated the effectiveness in terms
of anomaly detection, retrieval efficiency and anomaly diag-
nosis of the proposed method.
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Table 2. Performance comparison in multivariate time series anomaly detection tasks on IoT, PAMAP2 and Optical Network
datasets. The best and the second performance are indicated respectively by boldface and underline.

IoT PAMAP2 Optical Network
Algorithm P R F1 P R F1 P R F1
OC-SVM 0.938 0.492 0.592 0.342 0.348 0.344 0.714 0.372 0.474
RTST-AD 1.000 0.001 0.002 0.738 0.178 0.264 0.954 0.414 0.568

ClaSP 0.938 1.000 0.968 0.568 1.000 0.725 0.559 1.000 0.717
DHN-RAD (ours) 0.957 1.000 0.978 0.690 0.863 0.760 0.887 0.878 0.881
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Figure 4. Time series shapes of top 5 sensors with anomaly
score for the faults (a) and (b) in Optical Network dataset.
The upper 5 figures for each column are the time series shape
of top 5 sensors. The bottom figures with dashed lines are
anomaly scores
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