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ABSTRACT 

As the use of unmanned aerial vehicles (UAVs) becomes 

more widespread and their missions more complex, the need 

for safety measures for their technical components is also 

increasing. Among the components that are critical for the 

operation of UAVs, Brushless Direct Current (BLDC) motors 

are particularly important. This is due to their compact design 

and low number of wear parts, which make them well-suited 

for use in UAVs. 

In this work, test rig and simulation data of BLDC motors 

degradation are utilized to investigate the capabilities and 

limitations of different machine learning algorithms. For this 

purpose, suitable features representing the motor behavior are 

discussed. Classification and regression models are applied 

to analyze both the fault type and the degradation progress. 

The simulated data allows for an assessment of the influence 

of noise and degradation progress on the diagnosis 

performance. Furthermore, characteristics of various fault 

types and the representation of their degradation process in 

the simulation are discussed. The database and the derived 

features are shared publicly under https://tudatalib.ulb.tu-

darmstadt.de/handle/tudatalib/3912. 

1. INTRODUCTION 

The reliability of Brushless Direct Current (BLDC) motors is 

critical for the safe operation of unmanned aerial vehicles 

(UAVs), but designing effective condition monitoring 

approaches for these motors can be challenging due to a lack 

of operational data and uncertainty about the influence of 

noise and sample rate on diagnosis. Therefore, in this paper, 

the impact of noise and sample rate on the effectiveness of 

different machine learning algorithms for BLDC motor 

condition monitoring is analyzed using a simulation 

environment. 

As discussed previously in (Weigert 2022) common 

degradation effects of BLDC motors can be reproduced 

simulatively based on conducted test bench experiments. 

Similar approaches have already been taken by (Wolfram et 

al. 2018), (Siddiolo and Buderath 2018) and (Gupta et al. 

2021). Wolfram et al. (2018) utilized a test rig, which was 

further developed to parametrize the current BLDC motor 

simulation experimentally, in order to analyze and simulate 

an UAVs electrical powertrain and introduce several fault 

types to it. Siddiolo and Buderath (2018) generated 

experimental and synthetic Run-to-Failure datasets of an 

aeronautic fan on which they applied a Gaussian Process for 

health estimation. In (Gupta et al. 2021) the effects of high 

resistance contacts on BLDC motors are analyzed 

experimentally and in simulation. An overview on failure 

types of BLDC motors is given in (Kudelina et al. 2020), they 

identify mechanical, electrical and magnetic degradation to 

be the main failure classes of BLDC motors, which are 

represented in this work as well. 

In (Shifat and Hur 2020) the influence of short circuits on 

BLDC motors is analyzed and a databased Remaining Useful 

Lifetime estimation is conducted. They show, that the Fast 

Fourier Transformation (FFT) can be applied to distinguish 

healthy and faulty BLDC operations. Statistical features that 

can be derived based on rotating machinery data in the time 

and frequency domain are discussed by (Lei et al. 2007) and 

appear to be a good basis for a condition monitoring system. 

The approach of combining simulation and test bench results 

offers several advantages. Firstly, it reduces the material and 

time required to build up a sufficient database for condition 

monitoring with experimental data. Secondly, simulations 

can be used to derive tolerable noise levels and sample rates 

and their influence on fault classification. This is particularly 

useful when designing condition monitoring approaches 

before collecting operational data, as it allows for a more 

accurate prediction of the system's behavior under various 

conditions and an analysis of the required data quality for 

useful results. An analysis into the effects of noise on 

classification for different classifiers on several benchmark 

datasets has already been conducted by Hasan and Chu 

(2022). In (Bertolino et al. 2023) a PHM approach for 

Electromechanical Actuators is tested with simulated 

degradation patterns to estimate its future performance. 
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This work does also aim at comparing several algorithms on 

their condition monitoring performance. An overview on 

algorithmic approaches towards condition monitoring for 

rolling element bearings is given in (AlShorman et al. 2020). 

A comparison of several algorithmic approaches on motor 

current signal based health analysis is conducted in (Jiang et 

al. 2020), where the best results are received with Support 

Vector Machines. 

2. METHODOLOGY 

2.1. Variations in the simulation 

In order to compare the impact of variations in noise, sample 

rate and degradation progress in the simulation on the 

condition monitoring, simulated datasets are derived at 

various stages of those parameters. Each simulated dataset 

consists of 11 operation scenarios, one of them being a 

healthy operation and 10 depicting distinguished degradation 

mechanisms. In each operation scenario, 12 motor examples 

with slight variations in their defining parameters are 

generated and simulated at 11 degradation progress levels. 

This allows for a total of 1452 operation points in each 

simulated dataset with labels for the degradation type and 

degradation progress. 

Noise is introduced to the simulation as band-limited white 

noise passed through a low pass filter and added to ambient 

temperature and the supply voltage as those parameters are 

expected to be subject to slight fluctuations in reality as well. 

Simulation sets are derived for five noise levels of each 

parameter with each noise level a power of two larger than 

the previous level. With medium noise, the voltage range is 

14.8 ± 0.2V and the temperature range is 20 ± 0.5°C. The 

sample rate is kept constant for all simulations but from each 

simulated dataset, 5 feature sets are derived with obtained 

measurement values at five different sample rates with one 

magnitude difference each. To analyze the influence of the 

degradation progress level, subsets of the data can be formed 

containing only early or late progress levels respectively. 

The ambient temperature affects the simulation in two ways. 

Firstly, the airscrew torque relies on the derived air density. 

Secondly, the heat transfer from the system to its 

surroundings is modeled, determining the motor temperature. 

The motor temperature, in turn, has a linear impact on the 

winding resistance and is taken into account in the motor 

control. 

2.2. Feature engineering 

At each operation point a short timeseries with the same 

rotational speed setpoint for the motor controller is simulated. 

As the motor controller shall also prevent overheating, the 

achieved rotational speeds might differ between operational 

points even if the setpoint might still be reached within the 

performance limits of the simulated motor. The simulation 

contains a startup and a continuous operation phase with the 

temperature resistance in the startup phase temporarily 

lowered to reach an equilibrium prior to the continuous 

phase. Features are then derived based on the final section of 

the continuous phase. 

For the measured timeseries of the three phase currents, the 

rotational speed and the duty cycle applied by the motor 

controller a set of features is calculated to describe each 

operational point. Most of those features are obtained by 

applying simple statistic measures to the data, which are 

listed in table 1. These are fully applied to the time domain 

and the root mean square, skewness, kurtosis and shape factor 

also to the frequency domain as a result of a FFT of the 

timeseries. 

Table 1. Utilized statistical features. 
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Additionally, the phase currents are subdivided into six 

sections, which are part of one electrical rotation, and the 

mean value and standard deviation in each position is 
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calculated as additional feature. This can only be done, if the 

sample rate is high enough to obtain at least one measured 

value per position. The sections are assigned based on the 

maxima positions of a smoothed current signal and a 

correlation of the expected and actual current. Further derived 

features from the FFT are the number of peaks above a 

prominence threshold relative to the maximum amplitude, the 

variance of those peaks and the frequencies and amplitudes 

of the five most prominent peaks. 

2.3. Analyzed algorithms and optimization 

The simulated data sets are kept rather small, with the main 

aim of facilitating the analysis of the performance of several 

algorithms, but also with the application-based aim of 

obtaining traceable results and identifying meaningful 

indicators of degradation. Therefore the focus is on tree based 

methods, namely Decision Trees (DT), Random Forests (RF) 

and eXtreme Gradient Boosting (XGB), and Support Vector 

Machines (SVM). Those models are implemented using the 

Scikit-Learn (Pedregosa et al. 2012) and the XGBoost (Chen 

and Guestrin 2016) library in python. 

For the analyzed algorithms, two hyperparameter 

optimization steps are taken for each investigated simulation 

variation. First, a dataset with all calculated features is used 

to find an algorithmic setup, which does perform 

promisingly. Afterwards, the features are sorted based on 

their contribution to the algorithm obtained in the first 

optimization. A second optimization is done, in which the 

number of selected features is optimized as well. In this 

optimization, a small punishment for large algorithm 

structures and high numbers of features is included in the 

optimization objective to encourage lean models. The 

parameters themselves are kept rather small as well for the 

same reason. The parameter ranges for the different 

algorithms are listed in table 2. The bold parameter for each 

algorithm indicates the complexity parameter, which should 

be reduced in the second optimization step. 

Table 2. Hyperparameter ranges for optimization. 

 DT RF XGB  SVM 

classification 

criterion 

gini, entropy or log 

loss 
merror C 1e-6 - 75 

regression 

criterion 

squared error, 

friedman mse, 

absolute error or 

poisson 

squared 

error 
kernel 

linear, poly, 
rbf, 

sigmoid 

max depth 3 - 35 3 - 15 3 - 20 degree 1-5 

min samples leaf 2 - 20 - gamma 1e-6 - 10 

max features 5 - 150 - coef0 0 - 5 

n estimators - 5 - 15 
epsilon 

(regression) 
1e-6 - 10 

learning rate - 1e-3 - 0.5   

gamma - 0-3   
 

The hyperparameter optimization is done in form of a 

Bayesian search applying the optuna library in python (Akiba 

et al. 2019). This shall enable quickly identifying promising 

hyperparameter combinations. To account for the random 

element in the search, each hyperparameter optimization has 

been repeated and the best result chosen. 

The performance is evaluated with a four fold cross 

validation. Within the cross validation, the 12 simulated 

motor examples per operational state are each split into four 

groups, containing all measurements corresponding to three 

motor examples for each operational state respectively. For 

classification, the classification accuracy over all 11 

operation classes is evaluated, for regression the root mean 

squared error. 

3. DATA UNDERSTANDING 

3.1. Sensor characteristics 

Since the rotational speed is the controlled variable and the 

duty cycle is the manipulated variable, these only change 

marginally during the test depending on fluctuations over the 

revolution. The phase current, on the other hand, depends on 

the position of the motor and has a characteristic behavior in 

which it passes through six sections during one revolution, 

two with positive current, one with suppressed current, two 

with negative current and a second with suppressed current. 

This is depicted in figure 1 for four sample rate levels. 

 

Figure 1. Phase current values at varying sample rates. 

With a high sample rate, the pulse width modulation control 

is visible, as the simulated current alternates between values 

due to high frequent switching according to the duty cycle. 

With a medium sample rate, the alternating signal can’t be 

resolved anymore and resembles noise. At lower frequencies, 

not all sections of a revolution are measured and the 

representation of the motor behavior loses considerable 

expressiveness. The highest sample rate of 1e6 Hz is not 
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depicted as it is barely distinguishable from sample rate 1e5 

upon visual inspection. 

3.2. Fault types 

The simulated degradation mechanisms can be divided into 

three classes, electrical, mechanical and magnetic 

degradation. Electrical degradation is either represented by 

increased resistance or by short circuits between or within 

phases, mechanical degradation by increased local or overall 

friction values and magnetic degradation by reduced 

magnetic field strength. Those degradation patterns do 

impact the motor in distinguishable ways, which are further 

discussed in (Weigert 2022). In figure 2, the classes of a 

simulation dataset with minimal noise levels and highest 

sample rate are depicted. The figure axis of the mid current 

value of the most prominent current phase and the maximum 

amplitude of the duty cycle FFT are chosen based on a 

Principle Component Analysis to whose first two component 

those are the highest contributors. The axis are adjusted to 

contain a ratio of 10 between the smallest distance of 

datapoints along the axis and the medium distance of 

datapoints along the axis. This is due to the most interesting 

datapoints being those representing early degradation stages, 

which are close to each other and move further apart for 

increased degradation. This is depicted by an increasing 

transparency of the datapoints with increasing degradation. 

 

Figure 2. Simulation dataset features for high data quality. 

The time behavior of the degradation mechanisms can follow 

separate patterns, as most of them are expected to accumulate 

over the number of revelations unrestrictedly while the short 

circuit degradation is depicted by an infinite short circuit 

resistance in nominal state, that approaches zero 

asymptotically with increasing number of revolutions. In 

figure 3 the root mean square value of the highest phase 

current for one motors magnetic degradation is depicted 

exemplarily for the first type of degradation time behavior. It 

is linear up to a motor specific threshold randomly chosen out 

of a specified revelation number band with a gradient chosen 

out of a specified gradient band as well. From then on, it 

resembles an exponential increase, which adopts the gradient 

at the transition point. This shall resemble experimental 

degradation patterns which could for example be observed in 

the FEMTO bearing dataset of the IEEE PHM challenge 2012 

(Nectoux et al. 2012). The short-circuit resistance 

development over the number of revelations follows the 

formula given in Eq. 1 resulting in an hyperbola with the y 

and x axis as asymptotes. 

𝑅𝑠 =
𝑅𝑝ℎ𝑎𝑠𝑒

(𝑡 + 1) ∗ 𝑓𝑘𝑟𝑖𝑡

 (1) 

 

 

Figure 3. Magnetic motor degradation progress example. 

3.3. Influence of noise and sample rate 

The influence of the sample rate and simulation noise on the 

generated features is visualized in figure 4. Within the figure 

the already described features from figure 2, the mid current 

value of the most prominent current phase and the maximum 

amplitude of the duty cycle FFT, are plotted for varying noise 

and sample rate levels of the simulation dataset. To simplify 

the illustration, each depicted set has the same voltage and 

temperature noise. To enhance the influence analysis, in 

Table 3 and 4 the mean variances of the first two principle 

components within each dataset are listed. Two values are 

calculated, one being the variance of the mean values of each 

class and one being the mean value of the variance of each 

class, both are calculated as ratio to the overall variance of 

the dataset. 

 



Asia Pacific Conference of the Prognostics and Health Management Society 2023 

5 

 

Figure 4. Influence of the sample rate and simulation noise on the generated features. 

In figure 4 the intuitive assumption is confirmed that with 

increasing sample rate and decreasing noise individual 

classes become more distinguishable. With higher sample 

rate, there are more distinct directions away from the normal 

class, in which the features move with increasing degradation 

progress. Especially for the two lowest sample rates, it 

becomes apparent, that the frequency of the electric motor 

position passages cannot be resolved by them, resulting in 

less expressive features in the frequency domain. With 

increasing noise, the variance orthogonal to the trend with 

increasing degradation seems to increase as well. However 

the influence of the sample rate seems to be higher compared 

to the one of the noise, which can be due to the chosen ranges 

of noise and sample rate as well. 

Table 3. Variance of class means for first two principal 

components. 

 sample rate 

1e2 Hz 

sample rate 

1e3 Hz 

sample rate 

1e4 Hz 

sample rate 

1e5 Hz 

sample rate 

1e6 Hz 

noise level 1 0.370 0.389 0.399 0.480 0.477 

noise level 2 0.379 0.405 0.416 0.491 0.479 

noise level 3 0.429 0.450 0.459 0.522 0.480 

noise level 4 0.379 0.409 0.416 0.475 0.442 

noise level 5 0.343 0.357 0.364 0.433 0.433 
 

The visible effect of sample rate and noise is also confirmed 

by the variance values in table 3 and 4. For high sample rate 

and low noise levels, the variance of the mean class values 

reaches its highest values, indicating a better 

distinguishability of the classes. On the other hand, the mean 

variance within classes decreases for high sample rates and 

low noise levels, indicating a closer arrangement within the 

classes. Interestingly the best values according to that 

interpretation can be found at a medium noise level and the 

second highest sample rate. This might indicate, that most of 

the relevant information can already be derived at those 
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signal levels. At the same time, however, the simple nature 

of this evaluation metric should not be overlooked, as higher 

variance might for example be quite desirable along axis 

indicating the degradation progress. 

Table 4. Mean of class variances for first two principal 

components 

 

sample rate 

1e2 Hz 

sample rate 

1e3 Hz 

sample rate 

1e4 Hz 

sample rate 

1e5 Hz 

sample rate 

1e6 Hz 

noise level 1 0.695 0.673 0.661 0.566 0.562 

noise level 2 0.680 0.650 0.637 0.550 0.560 

noise level 3 0.606 0.583 0.573 0.504 0.551 

noise level 4 0.676 0.639 0.631 0.565 0.599 

noise level 5 0.725 0.712 0.704 0.620 0.610 
 

A comparison of the voltage and temperature noise influence 

is given in figure 5, comparing the same selected features as 

in figure 2 and 4 and only taking into account the extrema of 

both noise levels, who are depicted for the medium sample 

rate. It becomes apparent, that especially the winding short 

circuit faults, marked with triangles in the figure, are more 

sensitive towards voltage noise compared to temperature 

noise. As the voltage noise seems to be more influential on 

the variance of most of the classes compared to the 

temperature noise, adjustments to their scale might be 

interesting in further simulations. 

 

Figure 5. Influence of noise on the feature datasets. 

4. CLASSIFICATION CAPABILITIES 

In table 5 the classification accuracies with optimized 

hyperparamters for the different algorithms depending on the 

sample rate are listed for the lowest noise level. They are 

trained on the full dataset and with encouraged feature 

reduction. In the results, the ensemble methods RF and XGB 

outperform the DT and SVM especially for smaller sample 

rates with the DT achieving results close to those of the 

ensemble methods for higher sample rates and the SVM 

being outperformed by the DT for higher sample rates. It is 

also visible, that the highest sample rate of 1e6 Hz does not 

bring further improvement compared to 1e5 Hz. The feature 

reduction slightly increased the performance of the DT and 

SVM here while slightly decreasing the performance of the 

ensemble methods. The obtained accuracies are considerably 

distant from one, due to a high influenced of the first 

degradation stage, which contains no previous degradation 

and just a tiny growth of it during the simulation, but might 

also be conditioned by the rather small dataset and shallow 

architecture of the algorithms. 

Table 5. Classification accuracy on lowest noise level. 

 DT RF XGB SVM 

sample rate 1e2 Hz 0.6887 0.7452 0.7369 0.6901 

sample rate 1e3 Hz 0.8147 0.843 0.8423 0.801 

sample rate 1e4 Hz 0.8678 0.8843 0.8705 0.8202 

sample rate 1e5 Hz 0.8726 0.8898 0.8822 0.8506 

sample rate 1e6 Hz 0.8726 0.8836 0.8898 0.823 
 

The influence of the combined voltage and temperature noise 

on the classification is quantified at two different sample rates 

for each algorithm in table 6 considering all degradation 

progresses. It becomes apparent, that the noise especially 

influences the algorithm performance for small sample rates. 

For higher sample rates, it seems to effect the SVM and 

partially the DT but not influential on the ensemble methods 

anymore. A comparison of the influence of voltage and 

temperature noise shows, that the average performance 

decrease on the whole dataset is 3.33 % with fixed 

temperature and varied voltage noise and a less significant 

0.158 % with varied temperature and fixed voltage noise. 

Table 6. Classification accuracy depending on noise level. 

 sample rate 1e3 Hz sample rate 1e5 Hz 

 DT RF XGB SVM DT RF XGB SVM 

Noise level 1 0.8147 0.843 0.8423 0.801 0.8726 0.8898 0.8822 0.8506 

Noise level 2 0.801 0.8182 0.8278 0.7603 0.8554 0.8767 0.874 0.7941 

Noise level 3 0.7961 0.8175 0.8168 0.7176 0.8636 0.8891 0.8643 0.8003 

Noise level 4 0.7872 0.8292 0.8209 0.7521 0.8588 0.876 0.8733 0.8629 

Noise level 5 0.7652 0.8037 0.781 0.7686 0.8471 0.8747 0.8822 0.7713 
 

The dependence of the classification performance on the 

analyzed degradation progress levels is quantified in table 7. 

It lists classification accuracies of the different algorithms for 

the highest sample rate and lowest noise for different subsets 

of the simulated datasets. Especially the first degradation 

stage raises problems for the algorithms. The subsets 

containing the first degradation stage perform noticeably 

worse than the others, even compared to a subset starting at 

the second degradation stage and omitting the last five. 

Without the first degradation stage, only the DT seems to 

profit from focusing on higher degradation levels, while the 

other algorithms perform fairly constant on the different 

subsets. Analogous to the noise influence depending on the 

sample rate, both influences do themselves depend on the 

analyzed degradation progresses and degrease with more 

distinguishable degradation progress. 
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Table 7. Classification accuracy depending on examined 

degradation stages. 

 DT RF XGB SVM 

first to sixth degradation stage 0.8144 0.8270 0.8245 0.7967 

all degradation stages 0.8726 0.8836 0.8898 0.8230 

second to sixth degradation 

stage 
0.9455 0.9697 0.9606 0.9742 

all except first degradation stage 0.9447 0.9667 0.9591 0.9333 

last 5 degradation stages 0.9758 0.9621 0.9561 0.9561 
 

As all discussed results made use of feature reduction, in 

Table 8 the mean scores with and without feature reduction 

for the different algorithms are compared. This shows, that 

the feature reduction only has a small influence on the 

classification accuracy of the algorithms, slightly decreasing 

it for all except the DT. Paired with the reduction in 

complexity, the reduction of consulted features might still be 

attractive. 

Table 8. Mean classification accuracy depending on feature 

selection method. 

 DT RF XGB SVM 

all features 0.8343 0.8732 0.8634 0.8321 

reduced features 0.8375 0.8636 0.8599 0.8243 
 

The numbers of reduced features suggested by the 

hyperparameter optimization for the highest sample rate and 

lowest noise for the different degradation progress level sets 

are given in table 9. There is no clear indication of a 

dependency of the feature number and the complexity of the 

dataset. The RF does seem to work especially well with a 

small number of features while the XGB algorithm does 

require the highest amount of features under the analyzed 

conditions. 

Table 9. Number of selected features depending on dataset. 

 DT RF XGB SVM 

first to sixth degradation stage 18 8 14 13 

all degradation stages 15 18 25 21 

second to sixth degradation 

stage 
20 8 21 22 

all except first degradation stage 9 18 21 18 

last 5 degradation stages 13 9 22 13 

5. REGRESSION CAPABILITIES 

As two different regression approaches are conducted, 

performing a regression on the whole dataset and on each 

classified class individually, those approaches are compared 

for the different algorithms in Table 10. For all regression 

tasks, the whole simulated dataset is used with all entries of 

the normal class having a degradation progress of Zero. Table 

10 displays the regression results for the smallest noise level 

and varying sample rates. It is clearly visible, that the divided 

approach does lead to better results , unfortunately it did not 

converge for some SVM cases during a set training time limit, 

which is why their results were not included in the 

comparison. This may be due to the rather small datasets, 

when they are divided into single classes. For the approach 

on all classes, the SVMs perform poorer than the tree based 

methods as well with the DT coming closer to the ensemble 

methods in the all classes approach compared to the divided 

classes approach. The XGB produces the best results with the 

RF being in close range. The influence of the sample rate is 

visible for the lowest two sample rates, whose results are 

below those for the other sample rates, which all seem to be 

on a similar level. 

Table 10. Root mean square regression error depending on 

sample rate. 

 all classes divided classes 

 DT RF XGB SVM DT RF XGB 

sample rate 1e2 Hz 0.1970 0.1792 0.1745 0.3004 0.1192 0.1027 0.1039 

sample rate 1e3 Hz 0.1661 0.1456 0.1577 0.1745 0.0885 0.0722 0.0781 

sample rate 1e4 Hz 0.1428 0.1519 0.1268 0.1663 0.0719 0.0637 0.0583 

sample rate 1e5 Hz 0.1371 0.1320 0.1277 0.1754 0.0801 0.0598 0.0646 

sample rate 1e6 Hz 0.1372 0.1372 0.1288 0.1683 0.0733 0.0628 0.0652 
 

Table 11 displays the results for a medium sample rate of 1e4 

Hz and varying noise levels. The results contain a rather small 

influence of noise, especially for the undivided approach. For 

divided classes, the influence of noise is more prominent, 

which may be due to the smaller amount of data within 

divided classes. 

Table 11. Root mean square regression error depending on 

noise. 

 all classes divided classes 

 DT RF XGB SVM DT RF XGB 

Noise level 1 0.1428 0.1519 0.1269 0.1663 0.0719 0.0637 0.0583 

Noise level 2 0.1458 0.1335 0.1358 0.1761 0.0757 0.0650 0.0619 

Noise level 3 0.1532 0.1369 0.1461 0.1756 0.0807 0.0628 0.0679 

Noise level 4 0.1520 0.1329 0.1389 0.2582 0.0769 0.0723 0.0725 

Noise level 5 0.1464 0.1473 0.1414 0.1745 0.0877 0.0752 0.0725 

6. CONCLUSION 

By simulating the operation of a BLDC motor under varying 

conditions, the impact of noise, degradation process and 

sample rate on condition monitoring are investigated. It is 

shown, that lean algorithm architectures can produce 

satisfying results, with tree based methods being especially 

promising. Especially the ensemble methods RF and XGB 

show good robustness against decreasing data quality. Out of 

the analyzed influences, the sample rate turned out to be most 

influential on the performance. Resolving the electric motor 

position passages within the sample rate significantly 

improves the algorithms performance, with the results for 

lower sample rates still being useful indicators on the motor 
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condition. It also becomes clear, that lower data quality on 

one of the analyzed conditions increases the influence of the 

other ones on the results. Out of the degradation stages, the 

first one turns out to be hardly distinguishable for the various 

degradation mechanisms with the other ones having a much 

smaller effect on the classification results. For a regression 

on the degradation progress, dividing the fault classes by a 

preceding classification leads to considerably better results, 

which may be further improved with more datapoints within 

classes. Therefore, further simulations involving larger data 

sets with more degradation levels may be of interest for future 

research, as well as the inclusion of larger noise levels and 

varying loads. 
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