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ABSTRACT

Eccentricity is one major indicator of mechanical faults in
electric machines and needs to be detected early to avoid
machine failures. Data-driven techniques based on machine
learning and deep learning algorithms have been proposed in
recent years for motor fault detection. However, the major-
ity of these methods use supervised learning algorithms and
require large, labelled datasets, which can be challenging to
obtain. In this paper, we propose a semi-supervised learning
method based on a deep generative model using a variational
auto-encoder for eccentricity fault quantification. Good pre-
diction accuracy can be achieved when only a small subset of
training data has labels.

1. INTRODUCTION

Eccentricity is one kind of fault that commonly happen in ro-
tating electric machines when the air gap between the stator
bore and the rotor is not uniform anymore (Benbouzid, 2000).
Eccentricity fault can occur in different forms: static eccen-
tricity occurs when the center of the rotor is displaced from
the stator bore central axis, while the rotor rotation center is
still aligned with the center of the rotor; dynamic eccentric-
ity occurs when the rotation center and the stator bore central
axis still aligns, but the rotor center is displaced; mixed ec-
centricity is a combination of both static and dynamic eccen-
tricity effects. Eccentricity can be caused by several different
reasons: there can be a small level of eccentricity due to devi-
ation from the perfect circle and imperfect alignments during
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the manufacturing phase; eccentricity can also evolve and in-
crease over time during the operation of the machine, due to
degradation of the mounting structures and bearings (Nandi,
Toliyat, & Li, 2005). High air gap eccentricity can induce
unbalanced magnetic pull, cause rubbing between stator and
rotor, impact the normal operation of the motor, and even lead
to failure of the machine. Therefore, eccentricity faults need
to be detected and corrected at an early stage to protect the
asset and avoid serious damages.

Several different sensing technologies have been widely in-
vestigated and implemented for the detection of mechani-
cal anomalies including eccentricity and bearing faults, such
as vibration (Harmouche, Delpha, & Diallo, 2015), acoustic
emission (Kang, Kim, & Kim, 2015), and motor phase cur-
rent (Zhou, Wang, Lin, Inoue, & Miyoshi, 2021). Indeed,
the unsmooth rotations of the electric machines due to me-
chanical faults will cause an increased level of vibration and
acoustic emission, and induce additional components in the
stator current spectrum. A lot of efforts have been put into
the theoretical understanding and physical modeling of the
faults (Nandi, Ahmed, & Toliyat, 2001; Akar, 2013; Wang,
Albader, Inoue, & Kanemaru, 2022). Based on these physical
models, detailed spectral analysis can be applied to the mea-
sured sensor signals to identify the fault conditions of elec-
tric machines. In practice, however, it can be challenging to
accurately detect eccentricity faults based solely on physical
models. For example, vibration signals can be affected by
noises from other sources, such as the mechanical unbalance
of the motor, and excitation from external sources in facto-
ries. The sensitivity of vibration signals also highly depends
on the specific location of the sensor installation. Detection
based on stator current signals has the advantages of simple
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implementation and low cost, but it also suffers in accuracy
due to the low signal-to-noise ratio of the frequency compo-
nents related to the eccentricity faults (Zhou et al., 2021).

On the other hand, data-driven approaches have been a re-
cent research focus for machine fault detection, thanks to
both the availability of measurement data in the internet-of-
things (IoT) era and the advancements in machine learning
and deep learning techniques. A large number of publica-
tions in recent years have proposed and implemented vari-
ous algorithms for the detection and classification of motor
faults (Zhang, Zhang, Wang, & Habetler, 2020). A com-
monly taken approach is the collect data measured on differ-
ent fault conditions, and train supervised learning algorithms
with these data for fault classification tasks.

While many of these algorithms can achieve extremely high
accuracy trained with the publicly available dataset, in real-
world applications the measured data can be quite different.
In many industrial applications, data is collected automati-
cally without intervention using sensors during the machine
operation. However, the labelling of these data can be time-
consuming and expensive (R-Far et al., 2019). In addition, we
cannot afford to run machines and collect data under faulty
conditions for an extended period due to the potential dan-
ger. Therefore, labelled data, especially under fault condi-
tions, are almost always scarce. This poses a great challenge
to the many available supervise learning schemes.

One promising approach to address this challenge is semi-
supervised learning, which utilizes both limited labelled data
and a large amount of unlabelled data for improved fault
detection and classification accuracy (C. Liu & Gryllias,
2020; Chen, Wang, Zhang, Jia, & Qin, 2018; Verstraete,
Droguett, Meruane, Modarres, & Ferrada, 2019). A number
of semi-supervised learning algorithms have been proposed
for fault detection, such as support vector data description
method (C. Liu & Gryllias, 2020), graph-based method (Chen
et al., 2018), and generative adversarial network (H. Liu et
al., 2018). A recent work evaluated and compared various
semi-supervised learning techniques for bearing fault classi-
fication, and showed variational auto-encoder (VAE) based
semi-supervised models have advantages in training stability
and achieved accuracy compared with supervised models and
other semi-supervised models (Zhang, Ye, Wang, & Habetler,
2021).

In this paper, we investigate a VAE-based semi-supervised
learning scheme for the eccentricity fault detection and its
fault severity prediction for electric machines, and quantify
the accuracy with experimentally measured data. We show
that the semi-supervised learning model can achieve much
better accuracy when only a small fraction of the data are
labelled.

2. EXPERIMENT SETUP

In this work, we investigate the eccentricity fault problem of a
0.75 kW, three-phase squirrel-cage induction motor. In order
to quantitatively study the behavior at different eccentricity
levels, a few modifications have been made to the motor. As
shown in Fig. 1, mounting structures are custom-made and
replace the original bearings in the motor to support the ro-
tor (only the mount on the load side is visible in the photo),
through the extended rotor shaft and a pair of new bearings
installed on the mounting structures. The stator assembly of
the motor is mounted on a linear stage, whose position in the
horizontal direction, hence the eccentricity level, can be ac-
curately adjusted using two pairs of micrometers mounted on
each side of the linear stage. The load to the motor under test
is provided by a power brake. A pair of accelerometers are
installed in the horizontal direction and the vertical direction,
respectively.

Figure 1. The experiment setup for the study of induction
motor eccentricity.

With this experiment setup, different eccentricity levels can
be created in the horizontal direction by adjusting the mi-
crometers. In our experiment, a total of 5 eccentricity levels
were created in the motor: 0%, 11%, 25%, 43%, and 56%,
where the percentage is defined as the ratio between the max-
imum air gap deviation and the nominal air gap size. Data
from the accelerometers were recorded for each eccentric-
ity level at 10 kHz sampling frequency under 8 different load
conditions: 0 N·m, 0.3 N·m, 0.5 N·m, 0.9 N·m, 1.4 N·m, 2.0
N·m, 2.7 N·m, and 3.5 N·m.

Depending on the mounting location of the accelerometer,
the measured vibration signals can have different features.
The signals under different eccentricity conditions can be
more distinguishable at certain locations than others. With-
out loss of generality, we examine the signals obtained with
accelerometers mounted in the vertical direction, while the
eccentricity fault occurs in the horizontal direction. Fig. 2
shows the measured time-domain vibration signals under the
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(a)

(b)

Figure 2. (a) The measured vibration data under different ec-
centricity levels at no-load condition, shifted in vertical di-
rection for clarity, and (b) the corresponding frequency spec-
trum.

no-load condition for different eccentricity conditions, and
the corresponding frequency spectrum obtained with Fourier
transform. As can be seen from Fig. 2(a), the time-domain
signals are quite complicated and the vibration amplitude
does not change significantly under different eccentricity con-
ditions. It is not straightforward to distinguish difference
eccentricity conditions based on the frequency spectrum ei-
ther,as shown in Fig. 2(b).

3. SEMI-SUPERVISED LEARNING MODEL FOR ECCEN-
TRICITY FAULT DETECTION

A variational auto-encoder is a deep generative model whose
architecture is similar to a standard auto-encoder, which is
composed of an encoder and a decoder, and trained to gener-
ally minimize the reconstruction error between the input data
and the encoded-decoded output data. The training of VAE
is regularized to avoid the overfitting problem, by first encod-
ing the input as a distribution over the latent space instead of
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Figure 3. Illustration of the semi-supervised generative model
based on VAE.

as a single point, then sampling a point from the distribution,
which is then decoded with the decoder. The reconstruction
error is then calculated and back-propagated through the VAE
network. Probabilistic framework and variational inference
are the theoretical foundations of the formulation, and they
provide the powerful generative power of VAE.

Semi-supervised generative models based on VAE have been
proposed (Kingma, Mohamed, Rezende, & Welling, 2014)
and applied for bearing fault classification accuracy improve-
ment (Zhang et al., 2021). Detailed descriptions of the mod-
els including theory and formulations can be found in these
references. Here a high-level introduction of the model struc-
ture is provided.

As shown in Fig. 3, the model takes in both labelled input
(xl, yl) and unlabelled input data (xu). Two independent
VAE-based encoders are constructed, one for each type of
data, with the same network structure, and embed the high-
dimensional input data as a set of low-dimensional latent fea-
tures z. A classifier network is also constructed and trained
to make predictions of the fault level y∗. The decoder part of
the model is the reverse of the encoder model, which takes
in both types of data and reconstructs the input data as its
output. Both xl and y are considered as input for labelled
data, and the output will be the reconstructed x∗

l and y∗; for
unlabeled data, the input is xu only and the output is recon-
structed x∗

u. The reconstruction error of the VAE model and
prediction error of the classifier are minimized during train-
ing. During inference, the trained classifier is used to make
predictions of the eccentricity level for a given input data. The
implementation process of the model can be found in previ-
ous work (Zhang et al., 2021).

4. ECCENTRICITY FAULT LEVEL PREDICTION

We then proceed to build machine learning models for eccen-
tricity fault level prediction.

In addition to implementing a semi-supervised VAE model,
popular unsupervised learning schemes such as principal
component analysis (PCA) and auto-encoder (AE), as well as
the supervised convolutional neural network (CNN), are also
trained for comparison. Hyper-parameters for these models
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are either selected to be consistent with the VAE model or are
obtained through parameter tuning. A PCA model is trained
for dimension reduction of input data into a feature space of
64. Support vector machine (SVM) is applied subsequently
as a classifier, with radial basis function (RBF) kernel and
regularization parameter C = 10. The AE model is con-
figured similarly to the PCA model and also uses SVM as
an external classifier. For the CNN model, each time-series
vibration data of length 1,024 is first transformed into a 2D
32×32 matrix before feeding to the network, which is a com-
monly used technique for fault detection (Wen, Li, Gao, &
Zhang, 2018). The CNN model has two convolution layers
with ReLU as the activation function, each with 2 × 2 convo-
lutions and 32 filters, followed by a 2 × 2 Max-Pooling layer
and a 0.25 dropout layer. A fully-connected hidden layer fol-
lows with a dimensionality of 512, then the output of which
is fed into a Softmax layer. The cross-entropy loss is adopted,
and the batch size is set to 10, which is also obtained via pa-
rameter tuning.

For the semi-supervised VAE, two independent networks are
used, one for labeled data and the other for unlabeled data.
They have same network structure built on CNN, but dif-
ferent input and output, as well as loss functions. Specifi-
cally, the encoder network has 2 convolutional layers, 1 fully-
connected layer using ReLu activation, and batch normaliza-
tion and dropout layers. The decoder network consists of 1
fully-connected layer followed by 3 transpose convolutional
layers, where the first 2 layers use ReLU activation and the
last layer uses linear activation. Fhe classifier network has 2
convolutional layers and 2 max pooling layers with dropout
and ReLU activation, followed by the final Softmax layer.
The hyper-parameters of the model are selected empirically.
We fix the latent space dimension as 128, and use a batch size
of 200 is used for training. We use RMSprop as optimizer,
with a 10−4 initial learning rate.

The measurement data first need to be pre-processed before
they can be used for the machine learning study. Since we
have 5 different eccentricity conditions, and measurements
are taken at 8 different load conditions, a total of 40 mea-
surements are recorded. Each measurement is 60 s long, with
a sampling rate of 10 kHz. These vibration signals are seg-
mented into data samples of equal length with 1,024 data
points each and a sliding rate of 0.5. After segmentation, we
have 1,170 data samples from each measurement, and a to-
tal of 46,800 data samples are obtained for the whole dataset.
These data samples are then shuffled and split into training
and test data sets with an 80:20 ratio. Classical standard-
ization techniques are also implemented in the training and
test dataset to ensure the vibration data have zero mean and
unit variance, which is enabled by subtracting the mean of
the original data and then dividing the result by its standard
deviation.

Figure 4. Eccentricity level classification accuracy with mod-
els trained on different percentages of labelled training data.

After processing the measurement data, we first train mod-
els to perform classification tasks, which are required to train
a model and make predictions on which class of eccentric-
ity level (out of a total of 5 levels) a data sample belongs to.
Each model is trained on a subset of the training data that
are labelled with corresponding eccentricity levels. For each
case, the rest of the training data is considered unlabelled.
For each trained model, the same test dataset is used to ex-
amine the classification accuracy, and the results are shown
in Fig. 4. The benchmark models, including PCA, AE, and
CNN cannot make use of the unlabelled portion of the train-
ing data, and the classification accuracy is generally worse,
especially when the ratio of labelled data is small. With an
increasing number of labelled data, all models can achieve
a classification accuracy of over 95%. On the contrary, the
semi-supervised VAE model utilizes both labelled and unla-
belled data of the training set, and it achieves higher classi-
fication accuracy even when the labelled portion is small. A
high classification accuracy of 95% on all the test datasets
is achieved when only 5%, or 1,872 data samples from the
training data are labelled.

Figure 5. Histogram of the eccentricity level prediction error.
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We can also train models to perform regression tasks, which
are required to train a model and make predictions on the ec-
centricity level for a given data sample. Instead of having 5
nodes at the output layer of the model with SoftMax activa-
tion function for classification task, only one node is assigned
at the output without activation for the regression task. Sim-
ilar to the classification task, good prediction accuracy can
be achieved on the regression task. As shown in Fig. 5, the
histogram of the prediction error for all test data samples is
centered around 0, and is within a few percent of the ground
truth for most test cases. The calculated root-mean-square er-
ror (RMSE) over all test samples is around 4.4%, which is
well below 10%, which is considered a threshold value for
practical applications.

We should point out that in the test, all conditions in the test
data are included in the training dataset. The regression task
can be considered as interpolation problem. When some of
the fault conditions are not included in the training data, a
model needs to be trained to make predictions on unseen data.
Machine learning models often fail to perform well in such
extrapolation problems. We have tested our regression model
for extrapolation task, by training the model with data sam-
ples from three eccentricity levels, and make predictions for
test data sampled from the other two new eccentricity levels.
The prediction errors are much higher than 10%. As a fu-
ture research direction of data-driven fault detection, efforts
should be made on such extrapolation tasks, where the trained
model can handle unseen new data and make reasonable pre-
dictions.

5. CONCLUSION

In summary, we presented a semi-supervised learning scheme
for motor eccentricity fault prediction using a variational
auto-encoder-based generative model. We built an experi-
mental setup to measure the vibration data of an induction
motor at different eccentricity levels, and trained data-driven
models for eccentricity level prediction. We show that the
semi-supervised learning model can achieve superior accu-
racy when only a small amount of data is labelled.
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