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ABSTRACT

Package failure like bond-wire lift-off is one common cause
of failure for discrete power electronic devices such as Schot-
tky diodes. To estimate their Remaining Useful Lifetime
(RUL), forward voltage drop is often used as the precursor
signal. Prior researches use the direct forward voltage feature
and its derived features to construct neural networks for RUL
prediction. These features can reflect the instant health con-
dition of the device in the current time or time window, but
miss to represent the accumulated effect of gradually decreas-
ing health conditions. In the paper, we formulate the integral
mean feature of forward voltage drop and propose to use it
to conduct RUL estimation. By the integral mean feature, we
are able to capture the device’s health condition in an accu-
mulated fashion. Our experiments show that our approach
is superior in generalization performance when compared to
the forward voltage feature and its statistical features based
neural networks for RUL estimation.

1. INTRODUCTION

The demand for reliability of discrete power electronic de-
vices such as Schottky diodes and Insulated-Gate Bipolar
Transistors (IGBTs) is constantly increasing as functional
safety must be ensured in harsher environments and in safety-
critical autonomous applications, e.g., automated vehicles,
industrial robotics, etc. To enable prognostic health monitor-
ing and management, predicting Remaining Useful Lifetime
(RUL) of power electronic devices is not an option but a must.

In the paper, we study the RUL estimation problem for pack-
age failure of Schottky diodes encapsulated in the common
transistor outline TO220 package. We focus on the bound-
wire lift-off failure, because it is the dominating failure mode

Zhonghai Lu et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

for TO220 devices (Otto & Rzepka, 2019). Our RUL estima-
tion is data driven, meaning that a machine learning model is
trained to establish the relationship between RUL and its pre-
cursor signal, which is an indicator of the device failure. For
the bond-wire liftoff failure of power diodes, a well-defined
precursor signal is the forward voltage drop, Vf . As a com-
mon practice, we use aggregated aging data from power cy-
cling tests for model training and inference.

Previous data-driven RUL estimation of power electronic de-
vices and modules extract various features from the original
precursor signal to facilitate the RUL estimation. These fea-
tures are derived from mathematical transformations of the
original time-series signal. These include time-domain statis-
tical features (Ismail, Saidi, Sayadi, & Benbouzid, 2020) such
as mean, standard deviation, entropy, etc., classic frequency-
domain features such as power spectrum, and those features
after convolution e.g. using convolutional layer for hidden
feature extraction (X. Li, Zhang, & Ding, 2019). Statistical
time-domain features give summative information about the
time-series data in each profiling time window. Frequency-
domain features give basic information about the frequency
components embedded in the precursor signal, which are not
accessible in time-domain analysis, The convolution opera-
tion can help to extract hidden features, but interpreting the
extracted features is often difficult. Nevertheless, none of the
existing features attempts to relate the device’s RUL to the
damage accumulation of the device. This is not satisfactory
because the failure of a device is typically not the result of
instant damage, but the result of damage accumulation.

In the paper, we develop the concept of integral mean of pre-
cursor signal and propose to use it as a relevant feature to
study the RUL of power diodes. The integral mean is the
mean of the integral of the forward voltage drop, Vf . We
give a mathematical definition for this derived feature, show
how to use the integral mean as the input feature to construct
an RUL estimation model using Recurrent Neural Network
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(RNN), and demonstrate that it can improve the estimation
model’s accuracy when compared to the time-domain statis-
tical features.

The remainder of the paper is organized as follows. Section 2
discusses related work. We present the concept of the integral
mean of precursor signal in Section 3 and apply it to construct
RNN model for RUL estimation in Section 4. Experimental
results using latest industrial power cycling tests are reported
in Section 5. Finally, we conclude in Section 6.

2. RELATED WORK

Lifetime modeling and RUL estimation of power electronic
devices and modules can be broadly classified into model-
based, data-driven, and hybrid approaches. An overview was
presented in (Ciappa, 2008). Hanif et al. made a comprehen-
sive survey in (Hanif, Yu, DeVoto, & Khan, 2018). Recently
application of artificial intelligence for power electronic sys-
tems was surveyed in (Zhao, Blaabjerg, & Wang, 2021).

The model-based approach seeks a mathematical relationship
between the device or module’s lifetime (number of cycles
to failure, Nf ) and its dependent variables. Such analytical
models are developed from empirical data and often in rela-
tion to physics of failure. The Coffin-Manson model (Ciappa,
2002) is the original model capturing the relationship be-
tween the device’s lifetime and its temperature swing ∆T .
Later this model was expanded to consider other dependent
variables. For example, the Coffin-Manson-Arrhenius model
(Manson & Dolan, 1966) and the LESIT equation (Held, Ja-
cob, Nicoletti, Scacco, & Poech, 1997) consider not only
the temperature swing ∆T but also a reference temperature,
which could be minimum Tmin, maximum Tmax, mean Tm,
or effective Teff temperature (Otto & Rzepka, 2019).

The data-driven approach uses machine learning to model the
lifetime or RUL of electronic devices and modules. In (W. Li,
Wang, Liu, Zhang, & Wang, 2020), Long Short Term Mem-
ory (LSTM) was proposed to monitor device aging and pre-
dict RUL. In (He, Yu, Zheng, & Gong, 2021), He et al. tried
a few machine learning algorithms to predict RUL of IGBTs
using NASA accelerated aging data sets (Celaya, Wysocki,
& Goebel, 2009). Ismail et al. (Ismail et al., 2020) com-
bined time-series feature extraction and Principal Component
Analysis (PCA) based feature reduction with neural network
to address the RUL estimation problem. To deal with solder
joint degradation of electronic devices, deep neural network
(Salameh & Hosseinalibeiki, 2022) was proposed to predict
the useful lifetime of solder joints.

The hybrid approach combines the model-based and data-
driven approaches to utilize the advantages of both by fusing
physics rules into machine learning models (Chao, Kulkarni,
Goebel, & Fink, 2022). To predict the RUL of IGBT mod-
ules (Lu & Christou, 2019), a particle filter based method

incorporating the crack propagation physics law was devel-
oped. In (Zhao, Peng, Zhang, & Wang, 2022), the principle
of physics-informed neural network was applied to estimate
the parameters of the DC-DC buck converter.

3. INTEGRAL MEAN OF PRECURSOR SIGNAL

3.1. Precursor signal for wire-bond failure

For the investigated TO220 devices, wire-bond failure was
the dominant failure mechanism. Forward voltage drop,
Vf , is a well-qualified precursor signal to indicate this fail-
ure mode. As defined in the ECPE Guideline AQG 324
(Thoben & Reiter, 2021) and IEC standard IEC60749-34
(International Electro technical Commission, 2004), when the
forward voltage drop Vf raises by 5%, it signifies that one or
more of the bond-wire lift off and the device fails.

Figure 1. Precursor signal Vf (n) before device failure.

Figure 1 shows a typical forward voltage drop signal up to
5% of increase for a device under power cycling test.

3.2. Integral mean of precursor signal

The integral mean is a derived variable intended to reflect that
the device damage is an accumulation process. Mathemati-
cally the accumulation is the integral operation.

Given is a forward voltage signal, Vf (t), where t is a real
number. Its corresponding integral signal is I(t), which can
be expressed as follows.

I(t) =

∫ t

0

Vf (t)dt (1)

To consider the damage accumulation over time, we further
introduce the mean of the integral to measure the average
damage accumulation, leading to a corresponding new signal
IM(t) = I(t)/t. This is necessary because the same amount
of damage may be caused in a short period or a long period.
This in turn affects the length of the device’s lifetime. IM(t)
can be expressed as follows.

IM(t) =
1

t

∫ t

0

Vf (t)dt (2)
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Definitions in Eq. 1 and 2 are general for real-numbered con-
tinuous signals. For time series data from power cycling tests,
they are discrete sequences. Correspondingly, we give the
discrete version of Eq. 1 and 2 in Eq 3 and 4, respectively,
where n ∈ {1, 2, 3, · · · } is the power cycle.

I(n) =

n∑
i=1

Vf (i) (3)

IM(n) =
1

n

n∑
i=1

Vf (i) (4)

As an example, Figure 2 shows the corresponding integral

Figure 2. Integral-mean signal IM(n).

mean signal IM(n) of the Vf (n) signal in Figure 1.

4. RNN-BASED RUL ESTIMATION MODELS

We use RNN to build the RUL estimation model. Compared
to MLP and CNN, it has an internal memory structure that
can better deal with sequential data. Compared to LSTM,
RNN is simpler and thus beneficial for implementations in
resource-constrained embedded systems.

4.1. RUL estimation model using integral mean feature

Figure 3. Integral-mean feature based RNN model.

Figure 3 shows an RUL estimation RNN model with the in-
tegral mean feature. For our RUL estimation problem, signal
Vf (n) is used as the precursor signal. After transformation,

we obtain the integral mean feature IM(n). It is fed to the
RNN input layer with a timestep of 10. The second layer,
fully-connected recurrent layer, has 128 neurons. The third
layer is a fully-connected dense layer and has 8 neurons. The
output of the model is generated via the output layer, which
consists of a single neuron. We can write the basic mapping
function as ˆRUL(n) = RNN(IM(n)). “ ˆRUL(n)” indi-
cates the estimated value of RUL at time n, which is in con-
trast to the true RUL value at time n, RUL(n).

4.2. RUL estimation model using statistical features

Figure 4. Statistical features based RNN model.

For clarity and comparison, we also draw the baseline RNN
model for RUL estimation using extracted time-domain sta-
tistical features in Figure 4. The precursor signal is still
Vf (n), which is used to generate statistical features using a
sliding window. There are nine statistical features extracted
from Vf (n), which are root-mean square (RMS), mean (M),
standard deviation (STD), kurtosis (Ku), skewness (Sk), crest
factor (CF), peak-to-peak average ratio (PtP), energy (En),
and entropy (Ent) (Ismail et al., 2020). With this feature ex-
traction, the dimension of the input feature vector is increased
from one to nine, leading to a large increase in the model
complexity (the number of input neurons increases from 1 to
9). One can use PCA to reduce the dimension, but PCA is not
lossless. To keep the extracted features intact, we will use the
whole nine features in our comparative experiments.

5. EXPERIMENTS AND RESULTS

5.1. Experimental purpose and setup

5.1.1. Purpose

The purpose of experiments is to evaluate our proposed ap-
proach for RUL estimation. To this end, we compare three
RNN models using different features. For clarity, they are
notated as follows in the result figures.
• RNN(Vf ): The basic RNN model featured with the for-

ward voltage Vf .
• RNN(Vstatistic): The baseline RNN model (Figure 4)

featured with the nine derived time-domain statistical
features of forward voltage series Vf .

• RNN(IM ): Our proposed RNN model (Figure 3) fea-
tured with the integral mean of forward voltage Vf .

We use Mean Squared Error (MSE) as metric, the common
criterion to evaluate the performance of regression problems.
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5.1.2. Power cycling test setup

Figure 5. Schematic of power cycling test

Figure 5 draws a schematic for the power cycling test done
in Siemens. The test bench is covering two devices that are
electrically powered by a load current Iload which is switched
periodically with time intervals ton and toff between both de-
vices. During power cycling the temperature of the semicon-
ductors is measured by the temperature-dependent forward
voltage using a small measurement current Imeas. Before
power cycling the forward voltage is calibrated at different
temperatures up to 90◦ C. During power cycling all relevant
electrical parameters VDS , Iload, and thermal parameters Tj

are monitored continuously.

5.1.3. Test conditions

Test Parameter Group 1 Group 2 Group 3
Temperature Swing

∆Tj (K) 110.2 90.0 89.0
Temperature Maximum

Tj,max (◦C) 167.7 155.0 147.7
Load Current
Iload (A) 9.9 8.7 15

Switch Time
ton/toff (s) 9 / 9 9 / 9 3 / 3

Table 1. Test conditions for three groups of devices

In the power cycling tests, six SiC-Schottky diodes were
tested. They were partitioned into three groups, each with
two devices. The test conditions for the three groups are
listed in Table 1. Note that the three groups have different
test conditions with relatively large differences in ∆Tj , Iload,
or ton/toff .

5.1.4. The data set

Figure 6 depicts the original forward voltage series for the
six devices. The forward voltage is increasing continuously
because of gradually accumulating bond wire fatigue which
is increasing the electrical resistance. Because of increased
electrical resistance, electrical losses and therefore chip tem-
peratures increase which additionally leads to higher forward
voltages. Solder fatigue leading to higher thermal resistance

Figure 6. Forward voltage drop series up to failure.

Figure 7. Preprocessed forward voltage drop series and their
integral mean for the six devices.

can speed up those mechanisms. Only during a short period
of time at the beginning of the power cycling experiments,
the temperature is decreasing because of decreasing thermal
resistance of the thermal interface material due to alignment
by thermo-mechanical impact.

After removing outliers coming from incorrect measurements
and replacing data from the warm-up period with stable val-
ues, the Vf signals and their IM signals are illustrated in Fig-
ure 7. These signals are then normalized to the range [0, 1]
and ready for RNN modeling and inference.

5.2. Experimental results

Case Train dev. Test dev. Case Train dev. Test dev.

1 2, 3, 4, 5, 6 1 4 5, 6, 1, 2, 3 4
2 3, 4, 5, 6, 1 2 5 6, 1, 2, 3, 4 5
3 4, 5, 6, 1, 2 3 6 1, 2, 3, 4, 5 6

Table 2. Split the dataset for cross-validation

We conducted RUL estimation by k-fold cross-validation,
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i.e., training with k − 1 devices and testing with one device.
As we have six devices (k = 6), we have six cases shown
in Table 2. The intention is to evaluate the model’s out-of-
sample generalization performance.

5.2.1. Overall performance

The training and testing MSE results of 6 cases are shown
in Figure 8. All models were trained with 100 epochs when
their training MSE stabilized.

(a) Training MSE

(b) Testing MSE

Figure 8. Training and testing MSE comparison of three RNN
models for six cases plus Average of the six cases.

• In training, RNN(Vstatistic) has the best performance
over the 3 models in all cases except Case 2, and it has
the lowest loss on average as well. RNN(IM ) has the
second lowest loss in all cases and it is approximately
1.58 times larger than the loss of RNN(Vstatistic) but
2.13 times smaller than that of RNN(Vf ) on average.

• In testing, by contrast, RNN(Vstatistic) has a signifi-
cantly higher loss than the other two models in all cases
as well as on average. However, RNN(IM ) has the best
test performance over all cases. On average, its loss is
2.21 times smaller than that of RNN(Vf ) and 6.31 times
smaller than that of RNN(Vstatistic).

The results show that the RNN(IM ) model performs well in
training and can generalize the best in testing.

5.2.2. Performance illustration

To give insights on the overall performance improvement, we
visualize details for RUL estimation of Case 1. Figure 9 com-

pares the model training performance for all 5 train devices
and 1 test device.

Figure 9. Training and testing performance illustration of the
3 RNN models for Case 1.

5.2.3. Epoch-wise performance monitoring

(a) Vf Case 1 (b) Vf Case 2

(c) Vstatistics Case 1 (d) Vstatistics Case 2

(e) IM Case 1 (f) IM Case 2

Figure 10. Training and testing MSE over training epochs for
three RNN models in Case 1 and Case 2.

Figure 10 depicts the three models’ training and testing MSE
with respect to training epochs in Case 1 and Case 2. The
testing loss is normally higher than the training loss, except
in Case 1 where the RNN(IM ) has a lower testing loss. We
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can observe that, even though RNN(Vstatistic) has the small-
est training MSE, it does not overfit in the normal sense of
training MSE decreasing but testing MSE increasing. Rather
its training performance stabilizes after a certain epoch but
its testing performance fluctuates, like the other two mod-
els. Compared with the other two models in testing, our
RNN(IM ) always has a lower loss. This indicates that the
model using the IM feature can generalize better throughout
different devices under different test conditions.

6. CONCLUSION

We have proposed a new feature, integral mean of precur-
sor signal, to conduct RUL estimation of discrete power elec-
tronic devices. This feature intends to capture the accumu-
lated damage of the device because the average damage ac-
cumulation can be mathematically expressed as an integral
mean operation. With the same RNN structure for RUL es-
timation, we have compared this feature to a state-of-the-art
counterpart using time-domain statistical features. Our exper-
iments show that it can largely improve the model generaliza-
tion performance due to the nature of integral mean capturing
the damage accumulation, which is less dependent on specific
testing conditions. In the future, we will use the integral mean
feature of the precursor signal to study other failure modes of
discrete power electronic devices.
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