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ABSTRACT 

As a technology for safe and efficient operation of reusable 

rockets, we are developing failure diagnosis technology for 

reusable rocket engines. In order to follow the changes in 

rocket engine operating conditions, a failure diagnostic 

method which monitors an error vector: the difference 

between the predicted and measured values of the sensors 

was developed. The method contains anomaly detection by 

Mahalanobis distance and failure identification by support 

vector machines (SVMs). In this report, the suitable 

monitoring sensors of SVMs for each failure mode were 

selected by using design of experiments. By using selected 

sensors, the F-score of SVMs were improved in all failure 

modes. From the results of the orthogonal table experiments, 

it was supposed that sensors which show the difference in 

failure modes are important to distinguish failure modes. In 

addition, a failure classifier combined with SVMs using the 

suitable sensors for each failure mode was developed and 

demonstrated. The performance of the combined failure 

classifier with the suitable sensors was mostly greater than 

that with all sensors. However, degradation of the 

classification performance was also obtained. It is necessary 

to consider how integrate the results of SVMs which are 

trained individually. 

1. INTRODUCTION 

Reusable space transportation systems have been developed 

to realize low cost and high frequent space transfer. For 

efficient operation of reusable rockets, it is effective to 

automate monitoring and inspections during and after a flight. 

One method is health monitoring, but because a rocket engine 

which is one of the main components in a rocket is a complex 

system, the automation of its health monitoring is a key issue. 

A rocket engine does not generate a constant thrust but 

control its thrust during a flight to reduce acceleration and to 

adjust flight altitude depending on a mission. Therefore, a 

mechanism of following a change of operation states is 

necessary for a health monitoring system of a rocket engine. 

For that purpose, an anomaly detection method for variable 

operation states which predicts state quantities in a little 

future from known ones and monitors the difference between 

measured values and predicted values was developed by 

Maru, Mori, Ogai, Mizukoshi, Takeuchi, Yamamoto, 

Yagishita and Nonaka (2018). This method enables anomaly 

detection independent of operating states by using predicted 

state quantities under a normal operating condition as a basis. 

Nagashima, Hashizume, Mori, Ishikawa and Hashimoto 

(2022) detected and classified critical failure modes for a 

rocket engine with high accuracy by combing anomaly 

detection by Mahalanobis distance (MD value) and failure 

classification by support vector machines (SVMs). In that 

study, misclassification of SVMs was observed in some 

failure modes. It was considered that detecting a change of 

sensor values became difficult because some failure affects 

only a part of sensor values. To address this problem, 

improvement of accuracy of a failure classification has been 

aimed by selecting suitable monitoring sensors for each 

failure mode. Here, selecting suitable sensors by using design 

of experiments for failure classification by SVMs are 

reported. 

2. FAILURE DIAGNOSTIC METHOD 

2.1. Error Vector 

Maru et al. (2018) defined the deference between predicted 

values and measured values as an “error vector”. The 

schematic image of the error vector is shown in Figure 1. 

Sensor values under a normal operating condition are 

predicted from the immediately preceding measured values 

and monitor the difference between these predicted values 

and the actual measured values. Here, a simulator for 

predicting sensor values is defined as a “parity simulator”, 
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and a vector whose elements are the difference between 

predictions and measurements of sensors at a certain time is 

defined as an “error vector”. Since, the error vector shows 

how much the measured values deviate from the expected 

values under a normal condition, it can monitor the target 

system health regardless of operating conditions. 

 

Figure 1. Concept of the error vector. 

2.2. Failure Diagnostic System 

Nagashima et al. (2022) proposed a combined method of 

anomaly detection by MD value and failure classification by 

SVMs for a failure diagnostic system of a reusable rocket 

engine. Anomaly detection by MD value can detect unknown 

anomalies because it determines whether the target system in 

normal. However, it cannot identify the location or the cause 

of the detected anomalies. Meanwhile, failure classification 

by SVMs can identify those of known failures, but it is 

difficult to detect unknown anomalies. Therefore, it is 

possible to detect unknown anomalies and identify known 

failure modes at the same time by first performing anomaly 

detection based on MD value and then classifying the 

detected anomalies using SVMs (Figure 2). 

 

Figure 2. Failure diagnostic system by a combination of MD 

value and SVMs. 

3. METHODOLOGY 

3.1. Target Rocket Engine and Failure Modes 

Machine learning requires a lot of training data, but in the 

case of rocket engines, the amount of operating data is often 

limited due to the enormous cost and time for implementation 

of rocket engine tests. In addition, it is not realistic to actually 

generate faults in order to acquire training data for failure 

classification. Therefore, a simulation-based development 

method (Nagashima et al, 2022) was used, which operating 

data used for machine learning are created using a simulator 

that reproduces a rocket engine. Figure 3 shows a system 

diagram of a target rocket engine. The simulator which 

creates training data was calibrated with operating data of 

rocket engine tests conducted at IHI Aerospace Aioi test 

facility (Ukai, Sakaki, Ishikawa, Sakaguchi and Ishihara, 

2019). 

 

 

Figure 3. System diagram of the rocket engine. 

 

In order to confirm the effect of improving the classification 

accuracy of SVMs by selecting the sensors, three failure 

modes are chosen as subjects of detection; a failure of the 

main oxidizer valve (MOV) and the main fuel valve (MFV), 

which misclassification occurred in the previous report 

(Nagashima et al., 2022), and a failure of the thrust control 

valve (TCV) that is also an electrically actuated valve. Failure 

modes included in the training data set and the test data set 

are listed in Table 1. The training data set has normal 

operating data (No. 0) as well as failure data not subject to 

detection (No. 4-6). 
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3.2. Experiment 

In order to select suitable sensors for each failure mode, an 

SVM that distinguishes one failure mode from a training data 

set was made for each targeting failure mode. That is, three 

SVMs with the suitable sensors for the failure of MOV, MFV 

and TCV were created.  

Sensor selection for each failure mode was performed by 

assigning each sensor to an orthogonal table of an 

experimental design method. Each sensor was assigned as a 

control factor (Table 2), and two levels of “1: used” and “2: 

not used” were set. The experimental conditions were 

determined by allocating them to an L32 orthogonal table and 

a performance of an SVM in each experimental condition was 

investigated. 

The F-score, which is the harmonic mean of precision and 

recall, was used to evaluate the performance of the SVM. The 

precision is the proportion of data whose true values are 

positive out of the data predicted to be positive, and the recall 

is the proportion of data predicted to be positive out of the 

data whose true values are positive. By using the F-score, it 

is possible to consider both accuracy and sensitivity. 

The hyperparameters of an SVM were optimized for each 

sensor combination. The tuning conditions of the 

hyperparameters are listed in Table 3. The SVMs were 

implemented by scikit-learn (Pedregosa, Varoquaux, 

Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, 

Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, 

Perrot and Duchesnay, 2011) and the hyperparameter 

optimization was performed by Optuna (Akiba, Sano, Yanase, 

Ohta and Koyama, 2019). 

 

4. RESULTS AND DISCUSSION 

4.1. Optimization of Sensor Combination 

Figure 4 shows a factorial effect diagram of the F-score made 

from the orthogonal table experiment for each failure mode. 

In failure mode 1 (MOV insufficient opening), there is a large 

difference in the F-score depending on whether K: mdotO 

(oxidizer flow rate) is used. This indicates the importance of 

monitoring the oxidizer flow rate, which is directly affected 

by insufficient opening of MOV, and it can be said that a 

reasonable result was obtained. The sensor that has the next 

largest impact on the F-score is F: PCMI (regeneratively 

cooled chamber inlet pressure), but this measurement 

position is in a different line from MOV (Figure 3). Thus, 

PCMI is considered to be almost unchanged in failure mode 

1. The reason why the unchanged sensor had a large impact 

on the classification score is that it is an effective sensor for 

distinguishing from other failure modes. Figures 5 and 6 

Table 1. Failure mode in data sets. 

 

No. Failure mode Parameter Magnitude 

0 Normal N/A N/A 

1 MOV insufficient 

opening 
Opening rate -30% 

2 MFV insufficient 

opening 
Opening rate -30% 

3 TCV insufficient 

opening 
Opening rate -10% 

4 Damage on turbine 

blades 
Efficiency -10% 

5 Cavitation in fuel 

pump 
Pump head -30% 

6 Damage on 

injector elements 
Pressure loss -30% 

 

 

Table 3. SVM hyperparameter tuning conditions. 

 

Item Condition 

SVM module Scikit-learn 

Optimization framework Optuna 

SVM kernel RBF kernel 

Range of cost parameter 10-5 < C < 105 

Range of kernel width 10-5 < γ < 105 

Cross validation 5-fold cross validation 

Scoring F-score 

 

 

Table 2. Sensors used in failure classification by SVM. 

 

Factor Sensor Explanation 

A PPIO O2 pump inlet pressure 

B PDO O2 pump outlet pressure 

C PJO O2 injector pressure 

D PPIF CH4 pump inlet pressure 

E PDF CH4 pump outlet pressure 

F PCMI Coolant inlet manifold 

pressure 

G PT1 Turbine inlet pressure 

H PT2 Turbine outlet pressure 

I PJF CH4 injector pressure 

J PC Combustion pressure 

K mdotO Mass flow rate of liquid O2 

L mdotF Mass flow rate of liquid CH4 

M mdotT Mass flow rate of turbine gas 

N mdotCMBF Mass flow rate of CH4 

injection 

O NTP Rotation speed of turbopump 

P TCMO Coolant outlet manifold 

temperature 

 

 



Asia Pacific Conference of the Prognostics and Health Management Society 2023 

4 

show the distribution of mdotO and PCMI in the training data 

sets of normal and failure modes 1 and 3, respectively. 

Changes in the distribution of mdotO due to failures are 

similar in failure modes 1 and 3 as shown in Figure 5, making 

it difficult to distinguish between them. On the other hand, 

PCMI shows clearly different distributions in failure modes 

1 and 3 as shown in Figure 6. In this way, it can be said that 

the sensor whose behavior differs between the target failure 

mode and the other failure modes also appears in the factorial 

effect diagram as an important sensor. 

In failure mode 2, the effect of F: PCMI is the largest, and 

this is because the effect of insufficient opening of MFV 

appears as a change in pressure on the downstream side. K: 

mdotO has the second largest effect, but it is supposed that 

this is not because of the MFV failure, but because it is 

effective in distinguishing it from other failure modes. Failure 

mode 3 affects more sensors than failure modes 1 and 2 

because the pump side is also affected by the reduced turbine 

output. It is considered that G: PT1 and F: PCMI, which have 

large changes due to the failure, greatly contributed to the 

classification performance. 

For failure modes 1 and 2, it was found that not only sensors 

that directly indicate the effect of the failure, but also sensors 

that show the difference from other failure modes are 

necessary for failure classification. Sometimes only the 

sensors which are directly affected by a failure are used for 

failure detection, however this result indicates that sensors 

which show the difference in failure modes are also important. 

All the sensors that the F-score was increased by using them 

were selected from the factorial effect diagram as suitable 

sensors for failure identification of each failure mode. Figure 

7 shows the F-scores when using all sixteen sensors and when 

using only the suitable sensors for each failure mode. Using 

the suitable sensors resulted in better classification 

performance in any failure mode. It is assumed that the 

characteristics of each failure mode have become easier to 

grasp by reducing the number of monitoring sensors. 

 

Figure 6. Frequency polygons of PCMI in the training 

data set, failure mode 1: MOV insufficient opening of  

-30%, failure mode 3: TCV insufficient opening of -10%. 

 

 
Figure 4. Factorial effect diagram of F-score, failure mode 1: MOV insufficient opening of -30%,  

failure mode 2: MFV insufficient opening of -30%, failure mode 3: TCV insufficient opening of -10%. 

 

 

Figure 5. Frequency polygons of mdotO in the training 

data set, failure mode 1: MOV insufficient opening of  

-30%, failure mode 3: TCV insufficient opening of -10%. 
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4.2. Combined Failure Classifier 

By combining the SVMs with the suitable sensors for each 

failure mode, a failure classifier that identifies the three 

failure modes (1, 2 and 3 in Table1) is created. As the 

classification result of the combined failure classifier, the one 

with the largest decision function calculated by each SVM 

was adopted. Figure 8 shows the classification scores of the 

failure classifier created using all sensors and the suitable 

sensors. In failure mode 1 and 3, the F-score was improved 

by using only suitable sensors, but in failure mode 2, the 

classification performance was better when all sensors were 

used. Since the performance of the single SVM for the failure 

mode 2 is higher than when all sensors are used, it is supposed 

that the degradation of classification performance is caused 

by misclassification of other SVMs. In other words, the SVM 

of the failure mode 2 classified correctly but other SVM 

misclassified with larger decision function, so the combined 

failure classifier adopted a wrong classification result. The 

hyperparameters were optimized individually for each SVM 

because the sensor combinations and the data distribution are 

different in failure modes. Considering how integrate 

classification results with taking account of the difference of 

SVMs for each failure mode is a future issue. 

5. CONCLUSION 

The suitable monitoring sensors of failure classification by 

SVMs were selected for each failure mode by using design of 

experiments. The failure classification performance of SVMs 

was improved by selecting suitable sensors for each failure 

modes. The effect of a failure becomes clearer by reducing 

sensors. In addition, it is supposed that sensors which show 

the difference in failure modes are important to identify 

failure modes. 

However, the degradation of the performance of failure 

classifiers was obtained for failure mode 2 when the 

classification results of SVMs tuned with different sensor 

combinations for each failure mode were integrated. 

Therefore, in the future, it is necessary to consider how 

integrate the classification results of SVMs with the suitable 

sensors selected for each failure modes. 
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